Пропуск в контексте

Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity

The fast increase of the amount of quantitative and qualitative characteristics of digital visual data calls for the improvement of the performance of modern image processing devices. This article proposes new algorithms for 2D digital image processing based on the Winograd method in a general form....

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Lyakhov, P. A., Ляхов, П. А., Nagornov, N. N., Нагорнов, Н. Н., Semyonova, N. F., Семенова, Н. Ф., Abdulsalyamova, A. S., Абдулсалямова, А. Ш.
Формат: Статья
Язык:Russian
Опубликовано: 2023
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/20.500.12258/23477
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-20.500.12258-23477
record_format dspace
spelling ir-20.500.12258-234772025-02-11T13:30:14Z Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Semyonova, N. F. Семенова, Н. Ф. Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Winograd method Computational complexity Digital image processing Digital filtering The fast increase of the amount of quantitative and qualitative characteristics of digital visual data calls for the improvement of the performance of modern image processing devices. This article proposes new algorithms for 2D digital image processing based on the Winograd method in a general form. An analysis of the obtained results showed that the use of the Winograd method reduces the computational complexity of image processing by up to 84 % compared to the traditional direct digital filtering method depending on the filter parameters and image fragments, while not affecting the quality of image processing. The resulting Winograd method transformation matrices and the algorithms developed can be used in image processing systems to improve the performance of the modern microelectronic devices that carry out image denoising, compression, and pattern recognition. Research directions that show promise for further research include hardware implementation on a field-programmable gate array and application-specific integrated circuit, development of algorithms for digital image processing based on the Winograd method in a general form for a 1D wavelet filter bank and for stride convolution used in convolutional neural networks. 2023-05-12T12:54:29Z 2023-05-12T12:54:29Z 2023 Статья Lyakhov P.A., Nagornov N.N., Semyonova N.F., Abdulsalyamova A.S. Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity // Computer Optics. - 2023. - 47 (1), pp. 68-78. - DOI: 10.18287/2412-6179-CO-1146 http://hdl.handle.net/20.500.12258/23477 ru Computer Optics application/pdf application/pdf
institution СКФУ
collection Репозиторий
language Russian
topic Winograd method
Computational complexity
Digital image processing
Digital filtering
spellingShingle Winograd method
Computational complexity
Digital image processing
Digital filtering
Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Semyonova, N. F.
Семенова, Н. Ф.
Abdulsalyamova, A. S.
Абдулсалямова, А. Ш.
Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity
description The fast increase of the amount of quantitative and qualitative characteristics of digital visual data calls for the improvement of the performance of modern image processing devices. This article proposes new algorithms for 2D digital image processing based on the Winograd method in a general form. An analysis of the obtained results showed that the use of the Winograd method reduces the computational complexity of image processing by up to 84 % compared to the traditional direct digital filtering method depending on the filter parameters and image fragments, while not affecting the quality of image processing. The resulting Winograd method transformation matrices and the algorithms developed can be used in image processing systems to improve the performance of the modern microelectronic devices that carry out image denoising, compression, and pattern recognition. Research directions that show promise for further research include hardware implementation on a field-programmable gate array and application-specific integrated circuit, development of algorithms for digital image processing based on the Winograd method in a general form for a 1D wavelet filter bank and for stride convolution used in convolutional neural networks.
format Статья
author Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Semyonova, N. F.
Семенова, Н. Ф.
Abdulsalyamova, A. S.
Абдулсалямова, А. Ш.
author_facet Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Semyonova, N. F.
Семенова, Н. Ф.
Abdulsalyamova, A. S.
Абдулсалямова, А. Ш.
author_sort Lyakhov, P. A.
title Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity
title_short Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity
title_full Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity
title_fullStr Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity
title_full_unstemmed Development of digital image processing algorithms based on the Winograd method in general form and analysis of their computational complexity
title_sort development of digital image processing algorithms based on the winograd method in general form and analysis of their computational complexity
publishDate 2023
url https://dspace.ncfu.ru/handle/20.500.12258/23477
work_keys_str_mv AT lyakhovpa developmentofdigitalimageprocessingalgorithmsbasedonthewinogradmethodingeneralformandanalysisoftheircomputationalcomplexity
AT lâhovpa developmentofdigitalimageprocessingalgorithmsbasedonthewinogradmethodingeneralformandanalysisoftheircomputationalcomplexity
AT nagornovnn developmentofdigitalimageprocessingalgorithmsbasedonthewinogradmethodingeneralformandanalysisoftheircomputationalcomplexity
AT nagornovnn developmentofdigitalimageprocessingalgorithmsbasedonthewinogradmethodingeneralformandanalysisoftheircomputationalcomplexity
AT semyonovanf developmentofdigitalimageprocessingalgorithmsbasedonthewinogradmethodingeneralformandanalysisoftheircomputationalcomplexity
AT semenovanf developmentofdigitalimageprocessingalgorithmsbasedonthewinogradmethodingeneralformandanalysisoftheircomputationalcomplexity
AT abdulsalyamovaas developmentofdigitalimageprocessingalgorithmsbasedonthewinogradmethodingeneralformandanalysisoftheircomputationalcomplexity
AT abdulsalâmovaaš developmentofdigitalimageprocessingalgorithmsbasedonthewinogradmethodingeneralformandanalysisoftheircomputationalcomplexity
_version_ 1842245614786576384