Przejdź do treści

Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank

In this paper, a study is carried out related to improving the reliability and fault tolerance of Fog Computing systems. This work is a continuation of previous studies. In the past, we have developed a method of fast operation for determining the sign of a number in the Residue Number System based...

Szczegółowa specyfikacja

Zapisane w:
Opis bibliograficzny
Główni autorzy: Shiriaev, E. M., Ширяев, Е. М., Kucherov, N. N., Кучеров, Н. Н., Babenko, M. G., Бабенко, М. Г., Lutsenko, V. V., Луценко, В. В.
Format: Статья
Język:English
Wydane: 2023
Hasła przedmiotowe:
Dostęp online:https://dspace.ncfu.ru/handle/20.500.12258/25805
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
id ir-20.500.12258-25805
record_format dspace
spelling ir-20.500.12258-258052023-11-16T09:25:36Z Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank Shiriaev, E. M. Ширяев, Е. М. Kucherov, N. N. Кучеров, Н. Н. Babenko, M. G. Бабенко, М. Г. Lutsenko, V. V. Луценко, В. В. Akushsky core function Residue number system (RNS) Chinese remainder theorem Fog computing Monte Carlo method In this paper, a study is carried out related to improving the reliability and fault tolerance of Fog Computing systems. This work is a continuation of previous studies. In the past, we have developed a method of fast operation for determining the sign of a number in the Residue Number System based on the Akushsky Core Function. We managed to increase the efficiency of calculations by using the approximate rank of a number. However, this result is not final. In this paper, we consider in detail the methods and techniques of the Akushsky Core Function. During research, it was found that the so-called weights can be equal to random variables. Based on the data obtained, we have developed a method for determining the optimal weights for the Akushsky Core Function. The result obtained allows you to obtain a performance advantage due to the preliminary identification of optimal weights for each set of moduli. 2023-11-16T09:23:59Z 2023-11-16T09:23:59Z 2023 Статья Shiriaev, E., Kucherov, N., Babenko, M., Lutsenko, V., Al-Galda, S. Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank // Applied Sciences (Switzerland). - 2023. - 13 (18). - статья № 10495. - DOI: 10.3390/app131810495 http://hdl.handle.net/20.500.12258/25805 en Applied Sciences (Switzerland) application/pdf application/pdf
institution СКФУ
collection Репозиторий
language English
topic Akushsky core function
Residue number system (RNS)
Chinese remainder theorem
Fog computing
Monte Carlo method
spellingShingle Akushsky core function
Residue number system (RNS)
Chinese remainder theorem
Fog computing
Monte Carlo method
Shiriaev, E. M.
Ширяев, Е. М.
Kucherov, N. N.
Кучеров, Н. Н.
Babenko, M. G.
Бабенко, М. Г.
Lutsenko, V. V.
Луценко, В. В.
Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank
description In this paper, a study is carried out related to improving the reliability and fault tolerance of Fog Computing systems. This work is a continuation of previous studies. In the past, we have developed a method of fast operation for determining the sign of a number in the Residue Number System based on the Akushsky Core Function. We managed to increase the efficiency of calculations by using the approximate rank of a number. However, this result is not final. In this paper, we consider in detail the methods and techniques of the Akushsky Core Function. During research, it was found that the so-called weights can be equal to random variables. Based on the data obtained, we have developed a method for determining the optimal weights for the Akushsky Core Function. The result obtained allows you to obtain a performance advantage due to the preliminary identification of optimal weights for each set of moduli.
format Статья
author Shiriaev, E. M.
Ширяев, Е. М.
Kucherov, N. N.
Кучеров, Н. Н.
Babenko, M. G.
Бабенко, М. Г.
Lutsenko, V. V.
Луценко, В. В.
author_facet Shiriaev, E. M.
Ширяев, Е. М.
Kucherov, N. N.
Кучеров, Н. Н.
Babenko, M. G.
Бабенко, М. Г.
Lutsenko, V. V.
Луценко, В. В.
author_sort Shiriaev, E. M.
title Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank
title_short Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank
title_full Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank
title_fullStr Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank
title_full_unstemmed Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank
title_sort algorithm for determining the optimal weights for the akushsky core function with an approximate rank
publishDate 2023
url https://dspace.ncfu.ru/handle/20.500.12258/25805
work_keys_str_mv AT shiriaevem algorithmfordeterminingtheoptimalweightsfortheakushskycorefunctionwithanapproximaterank
AT širâevem algorithmfordeterminingtheoptimalweightsfortheakushskycorefunctionwithanapproximaterank
AT kucherovnn algorithmfordeterminingtheoptimalweightsfortheakushskycorefunctionwithanapproximaterank
AT kučerovnn algorithmfordeterminingtheoptimalweightsfortheakushskycorefunctionwithanapproximaterank
AT babenkomg algorithmfordeterminingtheoptimalweightsfortheakushskycorefunctionwithanapproximaterank
AT babenkomg algorithmfordeterminingtheoptimalweightsfortheakushskycorefunctionwithanapproximaterank
AT lutsenkovv algorithmfordeterminingtheoptimalweightsfortheakushskycorefunctionwithanapproximaterank
AT lucenkovv algorithmfordeterminingtheoptimalweightsfortheakushskycorefunctionwithanapproximaterank
_version_ 1809808301987201024