A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values
Sign detection is a non-modular operation in the residue number system (RNS). It requires the calculation of the number positional characteristic represented in the RNS. This work proposes a new sign detection method based on the Chinese Remainder Theorem (CRT) with fractional values implemented usi...
Kaydedildi:
Asıl Yazarlar: | , , , , , , , , , |
---|---|
Materyal Türü: | Статья |
Dil: | English |
Baskı/Yayın Bilgisi: |
2023
|
Konular: | |
Online Erişim: | https://dspace.ncfu.ru/handle/20.500.12258/25808 |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
id |
ir-20.500.12258-25808 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-258082023-11-16T12:04:15Z A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values Lyakhov, P. A. Ляхов, П. А. Bergerman, M. V. Бергерман, М. В. Abdulkadirov, R. I. Абдулкадиров, Р. И. Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Nagornov, N. N. Нагорнов, Н. Н. Chinese remainder theorem with fraction values Sign detection Residue number system (RNS) Non-modular operation Sign detection is a non-modular operation in the residue number system (RNS). It requires the calculation of the number positional characteristic represented in the RNS. This work proposes a new sign detection method based on the Chinese Remainder Theorem (CRT) with fractional values implemented using the Wallace tree and the modified Kogge-Stone adder. Hardware modelling on FPGA for the proposed method shows that it provides 1.3 – 36.3 times less hardware costs than the other state-of-the-art (SOTA) methods, and for ASIC modelling the proposed method provides 1.14 – 35.74 times less hardware costs than the other SOTA methods. The presented sign detection method can be helpful in RNS-based devices in implementing comparison and division operations, providing an extension of the RNS application in areas such as cryptography, machine learning, and digital signal processing. 2023-11-16T12:02:28Z 2023-11-16T12:02:28Z 2023 Статья Lyakhov, P., Bergerman, M., Abdulkadirov, R., Abdulsalyamova, A., Nagornov, N., Voznesensky, A., Minenkov, D., Kaplun, D. A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values // Microprocessors and Microsystems. - 2023. - 102. - статья № 104940. - DOI: 10.1016/j.micpro.2023.104940 http://hdl.handle.net/20.500.12258/25808 en Microprocessors and Microsystems application/pdf application/pdf |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Chinese remainder theorem with fraction values Sign detection Residue number system (RNS) Non-modular operation |
spellingShingle |
Chinese remainder theorem with fraction values Sign detection Residue number system (RNS) Non-modular operation Lyakhov, P. A. Ляхов, П. А. Bergerman, M. V. Бергерман, М. В. Abdulkadirov, R. I. Абдулкадиров, Р. И. Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Nagornov, N. N. Нагорнов, Н. Н. A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values |
description |
Sign detection is a non-modular operation in the residue number system (RNS). It requires the calculation of the number positional characteristic represented in the RNS. This work proposes a new sign detection method based on the Chinese Remainder Theorem (CRT) with fractional values implemented using the Wallace tree and the modified Kogge-Stone adder. Hardware modelling on FPGA for the proposed method shows that it provides 1.3 – 36.3 times less hardware costs than the other state-of-the-art (SOTA) methods, and for ASIC modelling the proposed method provides 1.14 – 35.74 times less hardware costs than the other SOTA methods. The presented sign detection method can be helpful in RNS-based devices in implementing comparison and division operations, providing an extension of the RNS application in areas such as cryptography, machine learning, and digital signal processing. |
format |
Статья |
author |
Lyakhov, P. A. Ляхов, П. А. Bergerman, M. V. Бергерман, М. В. Abdulkadirov, R. I. Абдулкадиров, Р. И. Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Nagornov, N. N. Нагорнов, Н. Н. |
author_facet |
Lyakhov, P. A. Ляхов, П. А. Bergerman, M. V. Бергерман, М. В. Abdulkadirov, R. I. Абдулкадиров, Р. И. Abdulsalyamova, A. S. Абдулсалямова, А. Ш. Nagornov, N. N. Нагорнов, Н. Н. |
author_sort |
Lyakhov, P. A. |
title |
A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values |
title_short |
A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values |
title_full |
A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values |
title_fullStr |
A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values |
title_full_unstemmed |
A novel sign detection method in residue number system based on Chinese remainder theorem with fractional values |
title_sort |
novel sign detection method in residue number system based on chinese remainder theorem with fractional values |
publishDate |
2023 |
url |
https://dspace.ncfu.ru/handle/20.500.12258/25808 |
work_keys_str_mv |
AT lyakhovpa anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT lâhovpa anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT bergermanmv anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT bergermanmv anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT abdulkadirovri anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT abdulkadirovri anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT abdulsalyamovaas anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT abdulsalâmovaaš anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT nagornovnn anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT nagornovnn anovelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT lyakhovpa novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT lâhovpa novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT bergermanmv novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT bergermanmv novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT abdulkadirovri novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT abdulkadirovri novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT abdulsalyamovaas novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT abdulsalâmovaaš novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT nagornovnn novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues AT nagornovnn novelsigndetectionmethodinresiduenumbersystembasedonchineseremaindertheoremwithfractionalvalues |
_version_ |
1809808706564521984 |