Перейти до змісту

Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals

Automatic classification of heart rhythm disturbances using an electrocardiogram is a reliable way to timely detect diseases of the cardiovascular system. The need to automate this process is to increase the number of electrocardiogram signals. Classification methods based on the use of neural netwo...

Повний опис

Збережено в:
Бібліографічні деталі
Автори: Kiladze, M. R., Lyakhova, U. A., Ляхова, У. А., Nagornov, N. N., Нагорнов, Н. Н., Lyakhov, P. A., Ляхов, П. А.
Інші автори: Киладзе, М. Р.
Формат: Статья
Мова:English
Опубліковано: 2023
Предмети:
Онлайн доступ:https://dspace.ncfu.ru/handle/20.500.12258/26224
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
id ir-20.500.12258-26224
record_format dspace
spelling ir-20.500.12258-262242023-12-29T12:26:01Z Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals Kiladze, M. R. Lyakhova, U. A. Ляхова, У. А. Nagornov, N. N. Нагорнов, Н. Н. Lyakhov, P. A. Ляхов, П. А. Киладзе, М. Р. linear perceptron PhysioNet/Computing in Cardiology Challenge 2021 LSTM network Metadata Neural network classification Automatic classification of heart rhythm disturbances using an electrocardiogram is a reliable way to timely detect diseases of the cardiovascular system. The need to automate this process is to increase the number of electrocardiogram signals. Classification methods based on the use of neural networks provide a high percentage of arrhythmia recognition. However, known classification methods do not take into account patient characteristics. The work proposes a multimodal neural network that takes into account the age and gender characteristics of the patient. It includes a Long short-term memory (LSTM) network for feature extraction on twelve-channel electrocardiogram signals and a linear neural network for processing patient metadata such as age and gender. Extraction of electrocardiogram signal features occurs in parallel with metadata processing. The last unifying layer of the proposed multimodal neural network integrates heterogeneous data and features of electrocardiogram signals obtained using an LSTM network. The developed multimodal neural network was verified using the PhysioNet/Computing in Cardiology Challenge 2021 ECG database. The simulation results showed that the proposed multimodal neural network achieves a recognition accuracy of 63%, which is 2 percentage points higher compared to state-of-the-art methods. 2023-12-29T12:21:10Z 2023-12-29T12:21:10Z 2023 Статья Kiladze, M.R., Lyakhova, U.A., Lyakhov, P.A., Nagornov, N.N., Vahabi, M. Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals // IEEE Access. - 2023. - 11. - pp. 133744-133754. - DOI: 10.1109/ACCESS.2023.3335176 http://hdl.handle.net/20.500.12258/26224 en IEEE Access application/pdf application/pdf
institution СКФУ
collection Репозиторий
language English
topic linear perceptron
PhysioNet/Computing in Cardiology Challenge 2021
LSTM network
Metadata
Neural network classification
spellingShingle linear perceptron
PhysioNet/Computing in Cardiology Challenge 2021
LSTM network
Metadata
Neural network classification
Kiladze, M. R.
Lyakhova, U. A.
Ляхова, У. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Lyakhov, P. A.
Ляхов, П. А.
Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals
description Automatic classification of heart rhythm disturbances using an electrocardiogram is a reliable way to timely detect diseases of the cardiovascular system. The need to automate this process is to increase the number of electrocardiogram signals. Classification methods based on the use of neural networks provide a high percentage of arrhythmia recognition. However, known classification methods do not take into account patient characteristics. The work proposes a multimodal neural network that takes into account the age and gender characteristics of the patient. It includes a Long short-term memory (LSTM) network for feature extraction on twelve-channel electrocardiogram signals and a linear neural network for processing patient metadata such as age and gender. Extraction of electrocardiogram signal features occurs in parallel with metadata processing. The last unifying layer of the proposed multimodal neural network integrates heterogeneous data and features of electrocardiogram signals obtained using an LSTM network. The developed multimodal neural network was verified using the PhysioNet/Computing in Cardiology Challenge 2021 ECG database. The simulation results showed that the proposed multimodal neural network achieves a recognition accuracy of 63%, which is 2 percentage points higher compared to state-of-the-art methods.
author2 Киладзе, М. Р.
author_facet Киладзе, М. Р.
Kiladze, M. R.
Lyakhova, U. A.
Ляхова, У. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Lyakhov, P. A.
Ляхов, П. А.
format Статья
author Kiladze, M. R.
Lyakhova, U. A.
Ляхова, У. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Lyakhov, P. A.
Ляхов, П. А.
author_sort Kiladze, M. R.
title Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals
title_short Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals
title_full Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals
title_fullStr Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals
title_full_unstemmed Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Load Electrocardiogram Signals
title_sort multimodal neural network for recognition of cardiac arrhythmias based on 12-load electrocardiogram signals
publishDate 2023
url https://dspace.ncfu.ru/handle/20.500.12258/26224
work_keys_str_mv AT kiladzemr multimodalneuralnetworkforrecognitionofcardiacarrhythmiasbasedon12loadelectrocardiogramsignals
AT lyakhovaua multimodalneuralnetworkforrecognitionofcardiacarrhythmiasbasedon12loadelectrocardiogramsignals
AT lâhovaua multimodalneuralnetworkforrecognitionofcardiacarrhythmiasbasedon12loadelectrocardiogramsignals
AT nagornovnn multimodalneuralnetworkforrecognitionofcardiacarrhythmiasbasedon12loadelectrocardiogramsignals
AT nagornovnn multimodalneuralnetworkforrecognitionofcardiacarrhythmiasbasedon12loadelectrocardiogramsignals
AT lyakhovpa multimodalneuralnetworkforrecognitionofcardiacarrhythmiasbasedon12loadelectrocardiogramsignals
AT lâhovpa multimodalneuralnetworkforrecognitionofcardiacarrhythmiasbasedon12loadelectrocardiogramsignals
_version_ 1809808439824613376