Optimization of structural dynamics of the economy in the framework of the input-output methodology
В настоящей работе выбраны межотраслевые инерционности и предложен метод, который на шаге поиска использует вектор параметров произвольной (допускаемой самой моделью) длины. Это отличает предлагаемый метод от существующих, делая его уникальным. Указанная уникальность заключается в снятии так называе...
Сохранить в:
Главные авторы: | , , , |
---|---|
格式: | Статья |
语言: | Russian |
出版: |
2024
|
主题: | |
在线阅读: | https://dspace.ncfu.ru/handle/20.500.12258/26715 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
总结: | В настоящей работе выбраны межотраслевые инерционности и предложен метод, который на шаге поиска использует вектор параметров произвольной (допускаемой самой моделью) длины. Это отличает предлагаемый метод от существующих, делая его уникальным. Указанная уникальность заключается в снятии так называемого «проклятия размерности», присущего классическим задачам оптимизации (численного поиска) с применением методов от покоординатного спуска до богатых инструментов ньютоновского типа. В этом смысле метод является конкурентом оптимизации на основе машинного обучения искусственных нейронных сетей. При этом не важно, как именно формализована задача: в ней должны быть выделены целевые показатели и вектор варьируемых параметров. Можно поставить и решить массу оптимизационных задач, изменяя содержание вектора варьируемых параметров по соответствующему плану вычислительного эксперимента. В работе же представлен только один пример и один шаг оптимизации. Ограничивающим и функциональным условием работы метода является сохранение линейной зависимости между желаемыми приращениями вещественных частей собственных значений матрицы состояния модели и их чувствительностей к параметрам управления. Такие «малые» шаги оптимизации представляют собой самостоятельные задачи, численное решение которых можно повторять. |
---|