Пропуск в контексте

The EC sequences on points of an elliptic curve realization using neural networks

This paper shows that pseudorandom number generator based on ECsequence doesn’t satisfy the condition of Knuth k-distribution. A modified pseudorandom number generator on elliptic curve points built in neural network basis is proposed. The proposed generator allows to improve statistical properties...

全面介绍

Сохранить в:
书目详细资料
Главные авторы: Chervyakov, N. I., Червяков, Н. И., Babenko, M. G., Бабенко, М. Г., Deryabin, M. A., Дерябин, М. А., Kucherov, N. N., Кучеров, Н. Н., Kuchukova, N. N., Кучукова, Н. Н.
格式: Статья
语言:English
出版: Springer Verlag 2018
主题:
在线阅读:https://www.scopus.com/record/display.uri?eid=2-s2.0-84958260764&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=north+caucasus+federal+university&sid=94a185ef2a894025076dc32df599dd02&sot=afnl&sdt=cl&cluster=scopubyr%2c%222016%22%2ct&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=95&citeCnt=2&searchTerm=
https://dspace.ncfu.ru/handle/20.500.12258/3335
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:This paper shows that pseudorandom number generator based on ECsequence doesn’t satisfy the condition of Knuth k-distribution. A modified pseudorandom number generator on elliptic curve points built in neural network basis is proposed. The proposed generator allows to improve statistical properties of the sequence based on elliptic curve points so that it satisfies the condition of kdistribution i.e. the sequence is pseudorandom. Application of Neural network over a finite ring to arithmetic operations over finite field allows to increase the speed of pseudorandom number generator on elliptic curve points EC-256 by 1,73 times due to parallel structure