Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system
Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementati...
Enregistré dans:
Auteurs principaux: | , , , , , , , |
---|---|
Format: | Статья |
Langue: | English |
Publié: |
IEEE Computer Society
2019
|
Sujets: | |
Accès en ligne: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85061049082&origin=resultslist&sort=plf-f&src=s&st1=%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System&st2=&sid=5de745aaf0b399b11edbcdbf364e241e&sot=b&sdt=b&sl=123&s=TITLE-ABS-KEY%28%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru/handle/20.500.12258/4353 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
id |
ir-20.500.12258-4353 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-43532020-07-29T13:07:59Z Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. Valuev, G. V. Валуев, Г. В. Computer hardware Convolution Cost reduction Image recognition MATLAB Neural networks Numbering systems Field programmable gate arrays (FPGA) Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementation we propose the architecture that separated on hardware and software parts for performance optimization. Also we propose to use Residue Number System (RNS) arithmetic in the hardware part which implements the convolutional layer of CNN. Software simulation using Matlab 2017b shows that CNN with a minimum number of layers can be quickly and successfully trained. Hardware simulation using FPGA Kintex7 xc7k70tfbg484-2 demonstrates that using RNS in convolutional layer of CNN allows to reduce hardware costs by 32% compared with the traditional approach based on the binary number system 2019-02-18T11:50:00Z 2019-02-18T11:50:00Z 2018 Статья Chervyakov, N.I., Lyakhov, P.A., Valueva, M.V., Valuev, G.V., Kaplun, D.I., Efimenko, G.A., Gnezdilov, D.V. Area-Efficient FPGA Implementation of Minimalistic Convolutional Neural Network Using Residue Number System // Conference of Open Innovation Association, FRUCT. - 2018. - Volume 2018-November. - Номер статьи 8588106. - Pages 112-118 https://www.scopus.com/record/display.uri?eid=2-s2.0-85061049082&origin=resultslist&sort=plf-f&src=s&st1=%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System&st2=&sid=5de745aaf0b399b11edbcdbf364e241e&sot=b&sdt=b&sl=123&s=TITLE-ABS-KEY%28%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System%29&relpos=0&citeCnt=0&searchTerm= http://hdl.handle.net/20.500.12258/4353 en Conference of Open Innovation Association, FRUCT application/pdf application/pdf IEEE Computer Society |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Computer hardware Convolution Cost reduction Image recognition MATLAB Neural networks Numbering systems Field programmable gate arrays (FPGA) |
spellingShingle |
Computer hardware Convolution Cost reduction Image recognition MATLAB Neural networks Numbering systems Field programmable gate arrays (FPGA) Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. Valuev, G. V. Валуев, Г. В. Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system |
description |
Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementation we propose the architecture that separated on hardware and software parts for performance optimization. Also we propose to use Residue Number System (RNS) arithmetic in the hardware part which implements the convolutional layer of CNN. Software simulation using Matlab 2017b shows that CNN with a minimum number of layers can be quickly and successfully trained. Hardware simulation using FPGA Kintex7 xc7k70tfbg484-2 demonstrates that using RNS in convolutional layer of CNN allows to reduce hardware costs by 32% compared with the traditional approach based on the binary number system |
format |
Статья |
author |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. Valuev, G. V. Валуев, Г. В. |
author_facet |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. Valuev, G. V. Валуев, Г. В. |
author_sort |
Chervyakov, N. I. |
title |
Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system |
title_short |
Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system |
title_full |
Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system |
title_fullStr |
Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system |
title_full_unstemmed |
Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system |
title_sort |
area-efficient fpga implementation of minimalistic convolutional neural network using residue number system |
publisher |
IEEE Computer Society |
publishDate |
2019 |
url |
https://www.scopus.com/record/display.uri?eid=2-s2.0-85061049082&origin=resultslist&sort=plf-f&src=s&st1=%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System&st2=&sid=5de745aaf0b399b11edbcdbf364e241e&sot=b&sdt=b&sl=123&s=TITLE-ABS-KEY%28%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru/handle/20.500.12258/4353 |
work_keys_str_mv |
AT chervyakovni areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem AT červâkovni areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem AT lyakhovpa areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem AT lâhovpa areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem AT valuevamv areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem AT valuevamv areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem AT valuevgv areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem AT valuevgv areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem |
_version_ |
1760600650256744448 |