Aller au contenu

Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system

Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementati...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Chervyakov, N. I., Червяков, Н. И., Lyakhov, P. A., Ляхов, П. А., Valueva, M. V., Валуева, М. В., Valuev, G. V., Валуев, Г. В.
Format: Статья
Langue:English
Publié: IEEE Computer Society 2019
Sujets:
Accès en ligne:https://www.scopus.com/record/display.uri?eid=2-s2.0-85061049082&origin=resultslist&sort=plf-f&src=s&st1=%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System&st2=&sid=5de745aaf0b399b11edbcdbf364e241e&sot=b&sdt=b&sl=123&s=TITLE-ABS-KEY%28%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru/handle/20.500.12258/4353
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id ir-20.500.12258-4353
record_format dspace
spelling ir-20.500.12258-43532020-07-29T13:07:59Z Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. Valuev, G. V. Валуев, Г. В. Computer hardware Convolution Cost reduction Image recognition MATLAB Neural networks Numbering systems Field programmable gate arrays (FPGA) Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementation we propose the architecture that separated on hardware and software parts for performance optimization. Also we propose to use Residue Number System (RNS) arithmetic in the hardware part which implements the convolutional layer of CNN. Software simulation using Matlab 2017b shows that CNN with a minimum number of layers can be quickly and successfully trained. Hardware simulation using FPGA Kintex7 xc7k70tfbg484-2 demonstrates that using RNS in convolutional layer of CNN allows to reduce hardware costs by 32% compared with the traditional approach based on the binary number system 2019-02-18T11:50:00Z 2019-02-18T11:50:00Z 2018 Статья Chervyakov, N.I., Lyakhov, P.A., Valueva, M.V., Valuev, G.V., Kaplun, D.I., Efimenko, G.A., Gnezdilov, D.V. Area-Efficient FPGA Implementation of Minimalistic Convolutional Neural Network Using Residue Number System // Conference of Open Innovation Association, FRUCT. - 2018. - Volume 2018-November. - Номер статьи 8588106. - Pages 112-118 https://www.scopus.com/record/display.uri?eid=2-s2.0-85061049082&origin=resultslist&sort=plf-f&src=s&st1=%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System&st2=&sid=5de745aaf0b399b11edbcdbf364e241e&sot=b&sdt=b&sl=123&s=TITLE-ABS-KEY%28%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System%29&relpos=0&citeCnt=0&searchTerm= http://hdl.handle.net/20.500.12258/4353 en Conference of Open Innovation Association, FRUCT application/pdf application/pdf IEEE Computer Society
institution СКФУ
collection Репозиторий
language English
topic Computer hardware
Convolution
Cost reduction
Image recognition
MATLAB
Neural networks
Numbering systems
Field programmable gate arrays (FPGA)
spellingShingle Computer hardware
Convolution
Cost reduction
Image recognition
MATLAB
Neural networks
Numbering systems
Field programmable gate arrays (FPGA)
Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Valueva, M. V.
Валуева, М. В.
Valuev, G. V.
Валуев, Г. В.
Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system
description Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementation we propose the architecture that separated on hardware and software parts for performance optimization. Also we propose to use Residue Number System (RNS) arithmetic in the hardware part which implements the convolutional layer of CNN. Software simulation using Matlab 2017b shows that CNN with a minimum number of layers can be quickly and successfully trained. Hardware simulation using FPGA Kintex7 xc7k70tfbg484-2 demonstrates that using RNS in convolutional layer of CNN allows to reduce hardware costs by 32% compared with the traditional approach based on the binary number system
format Статья
author Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Valueva, M. V.
Валуева, М. В.
Valuev, G. V.
Валуев, Г. В.
author_facet Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Valueva, M. V.
Валуева, М. В.
Valuev, G. V.
Валуев, Г. В.
author_sort Chervyakov, N. I.
title Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system
title_short Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system
title_full Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system
title_fullStr Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system
title_full_unstemmed Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system
title_sort area-efficient fpga implementation of minimalistic convolutional neural network using residue number system
publisher IEEE Computer Society
publishDate 2019
url https://www.scopus.com/record/display.uri?eid=2-s2.0-85061049082&origin=resultslist&sort=plf-f&src=s&st1=%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System&st2=&sid=5de745aaf0b399b11edbcdbf364e241e&sot=b&sdt=b&sl=123&s=TITLE-ABS-KEY%28%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru/handle/20.500.12258/4353
work_keys_str_mv AT chervyakovni areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem
AT červâkovni areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem
AT lyakhovpa areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem
AT lâhovpa areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem
AT valuevamv areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem
AT valuevamv areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem
AT valuevgv areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem
AT valuevgv areaefficientfpgaimplementationofminimalisticconvolutionalneuralnetworkusingresiduenumbersystem
_version_ 1760600650256744448