Using virtual data for training deep model for hand gesture recognition
Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutiona...
Gorde:
Egile Nagusiak: | , , , , , , , |
---|---|
Formatua: | Статья |
Hizkuntza: | English |
Argitaratua: |
Institute of Physics Publishing
2018
|
Gaiak: | |
Sarrera elektronikoa: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85047744167&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=e8b1e6bfede530617390e7deae26e9c5&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=3&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/494 |
Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
id |
ir-20.500.12258-494 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-4942020-07-10T08:15:59Z Using virtual data for training deep model for hand gesture recognition Nikolaev, E. I. Николаев, Е. И. Dvoryaninov, P. V. Дворянинов, П. В. Lensky, Y. Y. Ленский, Я. Ю. Drozdovsky, N. S. Дроздовский, Н. С. Deep neural networks E-learning Information system Network architecture Neural networks Palmprint recognition Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutional neural networks. The first architecture produces the hand position as a 2D-vector by input hand image. The second one predicts the hand gesture class for the input image. The first proposed architecture produces state of the art results with an accuracy rate of 89% and the second architecture with split input produces accuracy rate of 85.2%. In this paper, the authors also propose using virtual data for training a supervised deep model. Such technique is aimed to avoid using original labelled images in the training process. The interest of this method in data preparation is motivated by the need to overcome one of the main challenges of deep supervised learning: using a copious amount of labelled data during training 2018-06-07T08:58:55Z 2018-06-07T08:58:55Z 2018 Статья Nikolaev, E.I., Dvoryaninov, P.V., Lensky, Y.Y., Drozdovsky, N.S. Using virtual data for training deep model for hand gesture recognition // Journal of Physics: Conference Series. - 2018. - Volume 1015. - Issue 4. - статья № 042045 https://www.scopus.com/record/display.uri?eid=2-s2.0-85047744167&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=e8b1e6bfede530617390e7deae26e9c5&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=3&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/494 en Journal of Physics: Conference Series application/pdf application/pdf Institute of Physics Publishing |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Deep neural networks E-learning Information system Network architecture Neural networks Palmprint recognition |
spellingShingle |
Deep neural networks E-learning Information system Network architecture Neural networks Palmprint recognition Nikolaev, E. I. Николаев, Е. И. Dvoryaninov, P. V. Дворянинов, П. В. Lensky, Y. Y. Ленский, Я. Ю. Drozdovsky, N. S. Дроздовский, Н. С. Using virtual data for training deep model for hand gesture recognition |
description |
Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutional neural networks. The first architecture produces the hand position as a 2D-vector by input hand image. The second one predicts the hand gesture class for the input image. The first proposed architecture produces state of the art results with an accuracy rate of 89% and the second architecture with split input produces accuracy rate of 85.2%. In this paper, the authors also propose using virtual data for training a supervised deep model. Such technique is aimed to avoid using original labelled images in the training process. The interest of this method in data preparation is motivated by the need to overcome one of the main challenges of deep supervised learning: using a copious amount of labelled data during training |
format |
Статья |
author |
Nikolaev, E. I. Николаев, Е. И. Dvoryaninov, P. V. Дворянинов, П. В. Lensky, Y. Y. Ленский, Я. Ю. Drozdovsky, N. S. Дроздовский, Н. С. |
author_facet |
Nikolaev, E. I. Николаев, Е. И. Dvoryaninov, P. V. Дворянинов, П. В. Lensky, Y. Y. Ленский, Я. Ю. Drozdovsky, N. S. Дроздовский, Н. С. |
author_sort |
Nikolaev, E. I. |
title |
Using virtual data for training deep model for hand gesture recognition |
title_short |
Using virtual data for training deep model for hand gesture recognition |
title_full |
Using virtual data for training deep model for hand gesture recognition |
title_fullStr |
Using virtual data for training deep model for hand gesture recognition |
title_full_unstemmed |
Using virtual data for training deep model for hand gesture recognition |
title_sort |
using virtual data for training deep model for hand gesture recognition |
publisher |
Institute of Physics Publishing |
publishDate |
2018 |
url |
https://www.scopus.com/record/display.uri?eid=2-s2.0-85047744167&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=e8b1e6bfede530617390e7deae26e9c5&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=3&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/494 |
work_keys_str_mv |
AT nikolaevei usingvirtualdatafortrainingdeepmodelforhandgesturerecognition AT nikolaevei usingvirtualdatafortrainingdeepmodelforhandgesturerecognition AT dvoryaninovpv usingvirtualdatafortrainingdeepmodelforhandgesturerecognition AT dvorâninovpv usingvirtualdatafortrainingdeepmodelforhandgesturerecognition AT lenskyyy usingvirtualdatafortrainingdeepmodelforhandgesturerecognition AT lenskijâû usingvirtualdatafortrainingdeepmodelforhandgesturerecognition AT drozdovskyns usingvirtualdatafortrainingdeepmodelforhandgesturerecognition AT drozdovskijns usingvirtualdatafortrainingdeepmodelforhandgesturerecognition |
_version_ |
1760600315507245056 |