Joan edukira

Using virtual data for training deep model for hand gesture recognition

Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutiona...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Nikolaev, E. I., Николаев, Е. И., Dvoryaninov, P. V., Дворянинов, П. В., Lensky, Y. Y., Ленский, Я. Ю., Drozdovsky, N. S., Дроздовский, Н. С.
Formatua: Статья
Hizkuntza:English
Argitaratua: Institute of Physics Publishing 2018
Gaiak:
Sarrera elektronikoa:https://www.scopus.com/record/display.uri?eid=2-s2.0-85047744167&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=e8b1e6bfede530617390e7deae26e9c5&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=3&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/494
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
id ir-20.500.12258-494
record_format dspace
spelling ir-20.500.12258-4942020-07-10T08:15:59Z Using virtual data for training deep model for hand gesture recognition Nikolaev, E. I. Николаев, Е. И. Dvoryaninov, P. V. Дворянинов, П. В. Lensky, Y. Y. Ленский, Я. Ю. Drozdovsky, N. S. Дроздовский, Н. С. Deep neural networks E-learning Information system Network architecture Neural networks Palmprint recognition Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutional neural networks. The first architecture produces the hand position as a 2D-vector by input hand image. The second one predicts the hand gesture class for the input image. The first proposed architecture produces state of the art results with an accuracy rate of 89% and the second architecture with split input produces accuracy rate of 85.2%. In this paper, the authors also propose using virtual data for training a supervised deep model. Such technique is aimed to avoid using original labelled images in the training process. The interest of this method in data preparation is motivated by the need to overcome one of the main challenges of deep supervised learning: using a copious amount of labelled data during training 2018-06-07T08:58:55Z 2018-06-07T08:58:55Z 2018 Статья Nikolaev, E.I., Dvoryaninov, P.V., Lensky, Y.Y., Drozdovsky, N.S. Using virtual data for training deep model for hand gesture recognition // Journal of Physics: Conference Series. - 2018. - Volume 1015. - Issue 4. - статья № 042045 https://www.scopus.com/record/display.uri?eid=2-s2.0-85047744167&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=e8b1e6bfede530617390e7deae26e9c5&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=3&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/494 en Journal of Physics: Conference Series application/pdf application/pdf Institute of Physics Publishing
institution СКФУ
collection Репозиторий
language English
topic Deep neural networks
E-learning
Information system
Network architecture
Neural networks
Palmprint recognition
spellingShingle Deep neural networks
E-learning
Information system
Network architecture
Neural networks
Palmprint recognition
Nikolaev, E. I.
Николаев, Е. И.
Dvoryaninov, P. V.
Дворянинов, П. В.
Lensky, Y. Y.
Ленский, Я. Ю.
Drozdovsky, N. S.
Дроздовский, Н. С.
Using virtual data for training deep model for hand gesture recognition
description Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutional neural networks. The first architecture produces the hand position as a 2D-vector by input hand image. The second one predicts the hand gesture class for the input image. The first proposed architecture produces state of the art results with an accuracy rate of 89% and the second architecture with split input produces accuracy rate of 85.2%. In this paper, the authors also propose using virtual data for training a supervised deep model. Such technique is aimed to avoid using original labelled images in the training process. The interest of this method in data preparation is motivated by the need to overcome one of the main challenges of deep supervised learning: using a copious amount of labelled data during training
format Статья
author Nikolaev, E. I.
Николаев, Е. И.
Dvoryaninov, P. V.
Дворянинов, П. В.
Lensky, Y. Y.
Ленский, Я. Ю.
Drozdovsky, N. S.
Дроздовский, Н. С.
author_facet Nikolaev, E. I.
Николаев, Е. И.
Dvoryaninov, P. V.
Дворянинов, П. В.
Lensky, Y. Y.
Ленский, Я. Ю.
Drozdovsky, N. S.
Дроздовский, Н. С.
author_sort Nikolaev, E. I.
title Using virtual data for training deep model for hand gesture recognition
title_short Using virtual data for training deep model for hand gesture recognition
title_full Using virtual data for training deep model for hand gesture recognition
title_fullStr Using virtual data for training deep model for hand gesture recognition
title_full_unstemmed Using virtual data for training deep model for hand gesture recognition
title_sort using virtual data for training deep model for hand gesture recognition
publisher Institute of Physics Publishing
publishDate 2018
url https://www.scopus.com/record/display.uri?eid=2-s2.0-85047744167&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=e8b1e6bfede530617390e7deae26e9c5&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=3&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/494
work_keys_str_mv AT nikolaevei usingvirtualdatafortrainingdeepmodelforhandgesturerecognition
AT nikolaevei usingvirtualdatafortrainingdeepmodelforhandgesturerecognition
AT dvoryaninovpv usingvirtualdatafortrainingdeepmodelforhandgesturerecognition
AT dvorâninovpv usingvirtualdatafortrainingdeepmodelforhandgesturerecognition
AT lenskyyy usingvirtualdatafortrainingdeepmodelforhandgesturerecognition
AT lenskijâû usingvirtualdatafortrainingdeepmodelforhandgesturerecognition
AT drozdovskyns usingvirtualdatafortrainingdeepmodelforhandgesturerecognition
AT drozdovskijns usingvirtualdatafortrainingdeepmodelforhandgesturerecognition
_version_ 1760600315507245056