Aller au contenu

A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation

In this paper, a new simplified iterative division algorithm for modular numbers that is optimized on the basis of the Chinese remainder theorem (CRT) with fractions is developed. It requires less computational resources than the CRT with integers and mixed radix number systems (MRNS). The main idea...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Chervyakov, N. I., Червяков, Н. И., Lyakhov, P. A., Ляхов, П. А., Babenko, M. G., Бабенко, М. Г., Nazarov, A. S., Назаров, А. С., Deryabin, M. A., Дерябин, М. А., Lavrinenko, I. N., Лавриненко, И. Н., Lavrinenko, A. V., Лавриненко, А. В.
Format: Статья
Langue:English
Publié: MDPI AG 2019
Sujets:
Accès en ligne:https://www.scopus.com/record/display.uri?eid=2-s2.0-85063445845&origin=resultslist&sort=plf-f&src=s&st1=%09A+high-speed+division+algorithm+for+modular+numbers+based+on+the+chinese+remainder+theorem+with+fractions+and+its+hardware+implementation&st2=&sid=892029d19f7c728d4bff772c02120f7f&sot=b&sdt=b&sl=153&s=TITLE-ABS-KEY%28%09A+high-speed+division+algorithm+for+modular+numbers+based+on+the+chinese+remainder+theorem+with+fractions+and+its+hardware+implementation%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru/handle/20.500.12258/5079
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id ir-20.500.12258-5079
record_format dspace
spelling ir-20.500.12258-50792020-02-18T13:19:26Z A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Babenko, M. G. Бабенко, М. Г. Nazarov, A. S. Назаров, А. С. Deryabin, M. A. Дерябин, М. А. Lavrinenko, I. N. Лавриненко, И. Н. Lavrinenko, A. V. Лавриненко, А. В. Division algorithm Modular arithmetic Residue number system (RNS) In this paper, a new simplified iterative division algorithm for modular numbers that is optimized on the basis of the Chinese remainder theorem (CRT) with fractions is developed. It requires less computational resources than the CRT with integers and mixed radix number systems (MRNS). The main idea of the algorithm is (a) to transform the residual representation of the dividend and divisor into a weighted fixed-point code and (b) to find the higher power of 2 in the divisor written in a residue number system (RNS). This information is acquired using the CRT with fractions: higher power is defined by the number of zeros standing before the first significant digit. All intermediate calculations of the algorithm involve the operations of right shift and subtraction, which explains its good performance. Due to the abovementioned techniques, the algorithm has higher speed and consumes less computational resources, thereby being more appropriate for the multidigit division of modular numbers than the algorithms described earlier. The new algorithm suggested in this paper has O (log 2 Q) iterations, where Q is the quotient. For multidigit numbers, its modular division complexity is Q(N), where N denotes the number of bits in a certain fraction required to restore the number by remainders. Since the number N is written in a weighed system, the subtraction-based comparison runs very fast. Hence, this algorithm might be the best currently available 2019-04-08T10:05:31Z 2019-04-08T10:05:31Z 2019 Статья Chervyakov, N., Lyakhov, P.E., Babenko, M., Nazarov, A., Deryabin, M., Lavrinenko, I., Lavrinenko, A. A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation // Electronics (Switzerland). - 2019. - Volume 8. - Issue 3. - Номер статьи 261 https://www.scopus.com/record/display.uri?eid=2-s2.0-85063445845&origin=resultslist&sort=plf-f&src=s&st1=%09A+high-speed+division+algorithm+for+modular+numbers+based+on+the+chinese+remainder+theorem+with+fractions+and+its+hardware+implementation&st2=&sid=892029d19f7c728d4bff772c02120f7f&sot=b&sdt=b&sl=153&s=TITLE-ABS-KEY%28%09A+high-speed+division+algorithm+for+modular+numbers+based+on+the+chinese+remainder+theorem+with+fractions+and+its+hardware+implementation%29&relpos=0&citeCnt=0&searchTerm= http://hdl.handle.net/20.500.12258/5079 en Electronics (Switzerland) application/pdf application/pdf MDPI AG
institution СКФУ
collection Репозиторий
language English
topic Division algorithm
Modular arithmetic
Residue number system (RNS)
spellingShingle Division algorithm
Modular arithmetic
Residue number system (RNS)
Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Babenko, M. G.
Бабенко, М. Г.
Nazarov, A. S.
Назаров, А. С.
Deryabin, M. A.
Дерябин, М. А.
Lavrinenko, I. N.
Лавриненко, И. Н.
Lavrinenko, A. V.
Лавриненко, А. В.
A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation
description In this paper, a new simplified iterative division algorithm for modular numbers that is optimized on the basis of the Chinese remainder theorem (CRT) with fractions is developed. It requires less computational resources than the CRT with integers and mixed radix number systems (MRNS). The main idea of the algorithm is (a) to transform the residual representation of the dividend and divisor into a weighted fixed-point code and (b) to find the higher power of 2 in the divisor written in a residue number system (RNS). This information is acquired using the CRT with fractions: higher power is defined by the number of zeros standing before the first significant digit. All intermediate calculations of the algorithm involve the operations of right shift and subtraction, which explains its good performance. Due to the abovementioned techniques, the algorithm has higher speed and consumes less computational resources, thereby being more appropriate for the multidigit division of modular numbers than the algorithms described earlier. The new algorithm suggested in this paper has O (log 2 Q) iterations, where Q is the quotient. For multidigit numbers, its modular division complexity is Q(N), where N denotes the number of bits in a certain fraction required to restore the number by remainders. Since the number N is written in a weighed system, the subtraction-based comparison runs very fast. Hence, this algorithm might be the best currently available
format Статья
author Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Babenko, M. G.
Бабенко, М. Г.
Nazarov, A. S.
Назаров, А. С.
Deryabin, M. A.
Дерябин, М. А.
Lavrinenko, I. N.
Лавриненко, И. Н.
Lavrinenko, A. V.
Лавриненко, А. В.
author_facet Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Babenko, M. G.
Бабенко, М. Г.
Nazarov, A. S.
Назаров, А. С.
Deryabin, M. A.
Дерябин, М. А.
Lavrinenko, I. N.
Лавриненко, И. Н.
Lavrinenko, A. V.
Лавриненко, А. В.
author_sort Chervyakov, N. I.
title A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation
title_short A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation
title_full A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation
title_fullStr A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation
title_full_unstemmed A high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation
title_sort high-speed division algorithm for modular numbers based on the chinese remainder theorem with fractions and its hardware implementation
publisher MDPI AG
publishDate 2019
url https://www.scopus.com/record/display.uri?eid=2-s2.0-85063445845&origin=resultslist&sort=plf-f&src=s&st1=%09A+high-speed+division+algorithm+for+modular+numbers+based+on+the+chinese+remainder+theorem+with+fractions+and+its+hardware+implementation&st2=&sid=892029d19f7c728d4bff772c02120f7f&sot=b&sdt=b&sl=153&s=TITLE-ABS-KEY%28%09A+high-speed+division+algorithm+for+modular+numbers+based+on+the+chinese+remainder+theorem+with+fractions+and+its+hardware+implementation%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru/handle/20.500.12258/5079
work_keys_str_mv AT chervyakovni ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT červâkovni ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lyakhovpa ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lâhovpa ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT babenkomg ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT babenkomg ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT nazarovas ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT nazarovas ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT deryabinma ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT derâbinma ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lavrinenkoin ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lavrinenkoin ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lavrinenkoav ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lavrinenkoav ahighspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT chervyakovni highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT červâkovni highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lyakhovpa highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lâhovpa highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT babenkomg highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT babenkomg highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT nazarovas highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT nazarovas highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT deryabinma highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT derâbinma highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lavrinenkoin highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lavrinenkoin highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lavrinenkoav highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
AT lavrinenkoav highspeeddivisionalgorithmformodularnumbersbasedonthechineseremaindertheoremwithfractionsanditshardwareimplementation
_version_ 1760600315974909952