Increasing of convolutional neural network performance using residue number system
This paper considers the method of pattern recognition based on a convolutional neural network using Sobel filters. Parameters of the convolutional neural network blocks were chosen experimentally by software modeling in MATLAB. We presents the architecture of the convolutional neural network constr...
Kaydedildi:
Asıl Yazarlar: | , , , , , |
---|---|
Materyal Türü: | Статья |
Dil: | English |
Baskı/Yayın Bilgisi: |
Institute of Electrical and Electronics Engineers Inc.
2018
|
Konular: | |
Online Erişim: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85040520452&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=6e44c4739f67eaef119fa92298a82e4b&sot=afnl&sdt=sisr&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&ref=%28Increasing+of+convolutional+neural+network+performance+using+residue+number%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/528 |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
id |
ir-20.500.12258-528 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-5282020-07-06T13:05:06Z Increasing of convolutional neural network performance using residue number system Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. Convolutional Neural Network (CNN) Image processing Pattern recognition Residue number system (RNS) This paper considers the method of pattern recognition based on a convolutional neural network using Sobel filters. Parameters of the convolutional neural network blocks were chosen experimentally by software modeling in MATLAB. We presents the architecture of the convolutional neural network constructed with residue number system for delay minimization. Using of special type of modules allows to accelerate the work of the device by 37,4% as compared to using a binary number system and by 18,5% as compared to using a known residue number system realization 2018-06-08T08:27:16Z 2018-06-08T08:27:16Z 2017 Статья Chervyakov, N.I., Lyakhov, P.A., Valueva, M.V. Increasing of convolutional neural network performance using residue number system // Proceedings - 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017. - 2017. - статья № 8109855. - pp. 135-140. https://www.scopus.com/record/display.uri?eid=2-s2.0-85040520452&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=6e44c4739f67eaef119fa92298a82e4b&sot=afnl&sdt=sisr&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&ref=%28Increasing+of+convolutional+neural+network+performance+using+residue+number%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/528 en Proceedings - 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017 application/pdf application/pdf Institute of Electrical and Electronics Engineers Inc. |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Convolutional Neural Network (CNN) Image processing Pattern recognition Residue number system (RNS) |
spellingShingle |
Convolutional Neural Network (CNN) Image processing Pattern recognition Residue number system (RNS) Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. Increasing of convolutional neural network performance using residue number system |
description |
This paper considers the method of pattern recognition based on a convolutional neural network using Sobel filters. Parameters of the convolutional neural network blocks were chosen experimentally by software modeling in MATLAB. We presents the architecture of the convolutional neural network constructed with residue number system for delay minimization. Using of special type of modules allows to accelerate the work of the device by 37,4% as compared to using a binary number system and by 18,5% as compared to using a known residue number system realization |
format |
Статья |
author |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. |
author_facet |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. |
author_sort |
Chervyakov, N. I. |
title |
Increasing of convolutional neural network performance using residue number system |
title_short |
Increasing of convolutional neural network performance using residue number system |
title_full |
Increasing of convolutional neural network performance using residue number system |
title_fullStr |
Increasing of convolutional neural network performance using residue number system |
title_full_unstemmed |
Increasing of convolutional neural network performance using residue number system |
title_sort |
increasing of convolutional neural network performance using residue number system |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2018 |
url |
https://www.scopus.com/record/display.uri?eid=2-s2.0-85040520452&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=6e44c4739f67eaef119fa92298a82e4b&sot=afnl&sdt=sisr&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&ref=%28Increasing+of+convolutional+neural+network+performance+using+residue+number%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/528 |
work_keys_str_mv |
AT chervyakovni increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem AT červâkovni increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem AT lyakhovpa increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem AT lâhovpa increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem AT valuevamv increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem AT valuevamv increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem |
_version_ |
1760599808598343680 |