İçeriği atla

Increasing of convolutional neural network performance using residue number system

This paper considers the method of pattern recognition based on a convolutional neural network using Sobel filters. Parameters of the convolutional neural network blocks were chosen experimentally by software modeling in MATLAB. We presents the architecture of the convolutional neural network constr...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Asıl Yazarlar: Chervyakov, N. I., Червяков, Н. И., Lyakhov, P. A., Ляхов, П. А., Valueva, M. V., Валуева, М. В.
Materyal Türü: Статья
Dil:English
Baskı/Yayın Bilgisi: Institute of Electrical and Electronics Engineers Inc. 2018
Konular:
Online Erişim:https://www.scopus.com/record/display.uri?eid=2-s2.0-85040520452&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=6e44c4739f67eaef119fa92298a82e4b&sot=afnl&sdt=sisr&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&ref=%28Increasing+of+convolutional+neural+network+performance+using+residue+number%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/528
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
id ir-20.500.12258-528
record_format dspace
spelling ir-20.500.12258-5282020-07-06T13:05:06Z Increasing of convolutional neural network performance using residue number system Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Valueva, M. V. Валуева, М. В. Convolutional Neural Network (CNN) Image processing Pattern recognition Residue number system (RNS) This paper considers the method of pattern recognition based on a convolutional neural network using Sobel filters. Parameters of the convolutional neural network blocks were chosen experimentally by software modeling in MATLAB. We presents the architecture of the convolutional neural network constructed with residue number system for delay minimization. Using of special type of modules allows to accelerate the work of the device by 37,4% as compared to using a binary number system and by 18,5% as compared to using a known residue number system realization 2018-06-08T08:27:16Z 2018-06-08T08:27:16Z 2017 Статья Chervyakov, N.I., Lyakhov, P.A., Valueva, M.V. Increasing of convolutional neural network performance using residue number system // Proceedings - 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017. - 2017. - статья № 8109855. - pp. 135-140. https://www.scopus.com/record/display.uri?eid=2-s2.0-85040520452&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=6e44c4739f67eaef119fa92298a82e4b&sot=afnl&sdt=sisr&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&ref=%28Increasing+of+convolutional+neural+network+performance+using+residue+number%29&relpos=0&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/528 en Proceedings - 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017 application/pdf application/pdf Institute of Electrical and Electronics Engineers Inc.
institution СКФУ
collection Репозиторий
language English
topic Convolutional Neural Network (CNN)
Image processing
Pattern recognition
Residue number system (RNS)
spellingShingle Convolutional Neural Network (CNN)
Image processing
Pattern recognition
Residue number system (RNS)
Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Valueva, M. V.
Валуева, М. В.
Increasing of convolutional neural network performance using residue number system
description This paper considers the method of pattern recognition based on a convolutional neural network using Sobel filters. Parameters of the convolutional neural network blocks were chosen experimentally by software modeling in MATLAB. We presents the architecture of the convolutional neural network constructed with residue number system for delay minimization. Using of special type of modules allows to accelerate the work of the device by 37,4% as compared to using a binary number system and by 18,5% as compared to using a known residue number system realization
format Статья
author Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Valueva, M. V.
Валуева, М. В.
author_facet Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Valueva, M. V.
Валуева, М. В.
author_sort Chervyakov, N. I.
title Increasing of convolutional neural network performance using residue number system
title_short Increasing of convolutional neural network performance using residue number system
title_full Increasing of convolutional neural network performance using residue number system
title_fullStr Increasing of convolutional neural network performance using residue number system
title_full_unstemmed Increasing of convolutional neural network performance using residue number system
title_sort increasing of convolutional neural network performance using residue number system
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2018
url https://www.scopus.com/record/display.uri?eid=2-s2.0-85040520452&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=6e44c4739f67eaef119fa92298a82e4b&sot=afnl&sdt=sisr&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&ref=%28Increasing+of+convolutional+neural+network+performance+using+residue+number%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/528
work_keys_str_mv AT chervyakovni increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem
AT červâkovni increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem
AT lyakhovpa increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem
AT lâhovpa increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem
AT valuevamv increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem
AT valuevamv increasingofconvolutionalneuralnetworkperformanceusingresiduenumbersystem
_version_ 1760599808598343680