A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem
Modular arithmetic, used in solving tasks related to increasing the productivity, reliability and safety of stand-alone devices. The limited computing resources of devices imposes significant limitations on the computational complexity of the algorithms used. To effectively use the Residue Number Sy...
Uloženo v:
Hlavní autoři: | , , , , , , , |
---|---|
Médium: | Статья |
Jazyk: | English |
Vydáno: |
Institute of Electrical and Electronics Engineers Inc.
2018
|
Témata: | |
On-line přístup: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85047996726&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=762e6d30544023d6a322a94577ba172b&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=19&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/615 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Shrnutí: | Modular arithmetic, used in solving tasks related to increasing the productivity, reliability and safety of stand-alone devices. The limited computing resources of devices imposes significant limitations on the computational complexity of the algorithms used. To effectively use the Residue Number System (RNS), we must reduce the complexity of the Residue-to-Binary Converter. We propose the criteria for selecting the parameters of the RNS for effective implementation. Approximate Chinese Remainder Theorem allows reducing the computational complexity from square to linear-logarithmic by using the recursive matching method Wang |
---|