Preskoči na sadržaj

A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem

Modular arithmetic, used in solving tasks related to increasing the productivity, reliability and safety of stand-alone devices. The limited computing resources of devices imposes significant limitations on the computational complexity of the algorithms used. To effectively use the Residue Number Sy...

Cijeli opis

Spremljeno u:
Bibliografski detalji
Glavni autori: Kucherov, N. N., Кучеров, Н. Н., Kuchukov, V. A., Кучуков, В. А., Kuchukova, N. N., Кучукова, Н. Н., Shangina, A. E., Шаньгина, А. Е.
Format: Статья
Jezik:English
Izdano: Institute of Electrical and Electronics Engineers Inc. 2018
Teme:
Online pristup:https://www.scopus.com/record/display.uri?eid=2-s2.0-85047996726&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=762e6d30544023d6a322a94577ba172b&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=19&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/615
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
id ir-20.500.12258-615
record_format dspace
spelling ir-20.500.12258-6152020-07-10T08:04:13Z A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem Kucherov, N. N. Кучеров, Н. Н. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. Shangina, A. E. Шаньгина, А. Е. Chinese remainder theorem (CRT) Residue number system (RNS) Residue-to-Binary Converter Modular arithmetic, used in solving tasks related to increasing the productivity, reliability and safety of stand-alone devices. The limited computing resources of devices imposes significant limitations on the computational complexity of the algorithms used. To effectively use the Residue Number System (RNS), we must reduce the complexity of the Residue-to-Binary Converter. We propose the criteria for selecting the parameters of the RNS for effective implementation. Approximate Chinese Remainder Theorem allows reducing the computational complexity from square to linear-logarithmic by using the recursive matching method Wang 2018-06-18T12:36:55Z 2018-06-18T12:36:55Z 2018 Статья Kucherov, N.N., Kuchukov, V.A., Kuchukova, N.N., Shangina, A.E. A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem // Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2018. - 2018. - Pages 325-328 https://www.scopus.com/record/display.uri?eid=2-s2.0-85047996726&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=762e6d30544023d6a322a94577ba172b&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=19&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/615 en Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2018 application/pdf application/pdf Institute of Electrical and Electronics Engineers Inc.
institution СКФУ
collection Репозиторий
language English
topic Chinese remainder theorem (CRT)
Residue number system (RNS)
Residue-to-Binary Converter
spellingShingle Chinese remainder theorem (CRT)
Residue number system (RNS)
Residue-to-Binary Converter
Kucherov, N. N.
Кучеров, Н. Н.
Kuchukov, V. A.
Кучуков, В. А.
Kuchukova, N. N.
Кучукова, Н. Н.
Shangina, A. E.
Шаньгина, А. Е.
A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem
description Modular arithmetic, used in solving tasks related to increasing the productivity, reliability and safety of stand-alone devices. The limited computing resources of devices imposes significant limitations on the computational complexity of the algorithms used. To effectively use the Residue Number System (RNS), we must reduce the complexity of the Residue-to-Binary Converter. We propose the criteria for selecting the parameters of the RNS for effective implementation. Approximate Chinese Remainder Theorem allows reducing the computational complexity from square to linear-logarithmic by using the recursive matching method Wang
format Статья
author Kucherov, N. N.
Кучеров, Н. Н.
Kuchukov, V. A.
Кучуков, В. А.
Kuchukova, N. N.
Кучукова, Н. Н.
Shangina, A. E.
Шаньгина, А. Е.
author_facet Kucherov, N. N.
Кучеров, Н. Н.
Kuchukov, V. A.
Кучуков, В. А.
Kuchukova, N. N.
Кучукова, Н. Н.
Shangina, A. E.
Шаньгина, А. Е.
author_sort Kucherov, N. N.
title A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem
title_short A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem
title_full A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem
title_fullStr A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem
title_full_unstemmed A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem
title_sort high-speed residue-to-binary converter based on approximate chinese remainder theorem
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2018
url https://www.scopus.com/record/display.uri?eid=2-s2.0-85047996726&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=762e6d30544023d6a322a94577ba172b&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=19&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/615
work_keys_str_mv AT kucherovnn ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kučerovnn ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kuchukovva ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kučukovva ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kuchukovann ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kučukovann ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT shanginaae ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT šanʹginaae ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kucherovnn highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kučerovnn highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kuchukovva highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kučukovva highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kuchukovann highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT kučukovann highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT shanginaae highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
AT šanʹginaae highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem
_version_ 1760599939611623424