A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem
Modular arithmetic, used in solving tasks related to increasing the productivity, reliability and safety of stand-alone devices. The limited computing resources of devices imposes significant limitations on the computational complexity of the algorithms used. To effectively use the Residue Number Sy...
Spremljeno u:
Glavni autori: | , , , , , , , |
---|---|
Format: | Статья |
Jezik: | English |
Izdano: |
Institute of Electrical and Electronics Engineers Inc.
2018
|
Teme: | |
Online pristup: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85047996726&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=762e6d30544023d6a322a94577ba172b&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=19&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/615 |
Oznake: |
Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
|
id |
ir-20.500.12258-615 |
---|---|
record_format |
dspace |
spelling |
ir-20.500.12258-6152020-07-10T08:04:13Z A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem Kucherov, N. N. Кучеров, Н. Н. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. Shangina, A. E. Шаньгина, А. Е. Chinese remainder theorem (CRT) Residue number system (RNS) Residue-to-Binary Converter Modular arithmetic, used in solving tasks related to increasing the productivity, reliability and safety of stand-alone devices. The limited computing resources of devices imposes significant limitations on the computational complexity of the algorithms used. To effectively use the Residue Number System (RNS), we must reduce the complexity of the Residue-to-Binary Converter. We propose the criteria for selecting the parameters of the RNS for effective implementation. Approximate Chinese Remainder Theorem allows reducing the computational complexity from square to linear-logarithmic by using the recursive matching method Wang 2018-06-18T12:36:55Z 2018-06-18T12:36:55Z 2018 Статья Kucherov, N.N., Kuchukov, V.A., Kuchukova, N.N., Shangina, A.E. A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem // Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2018. - 2018. - Pages 325-328 https://www.scopus.com/record/display.uri?eid=2-s2.0-85047996726&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=762e6d30544023d6a322a94577ba172b&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=19&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/615 en Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2018 application/pdf application/pdf Institute of Electrical and Electronics Engineers Inc. |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Chinese remainder theorem (CRT) Residue number system (RNS) Residue-to-Binary Converter |
spellingShingle |
Chinese remainder theorem (CRT) Residue number system (RNS) Residue-to-Binary Converter Kucherov, N. N. Кучеров, Н. Н. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. Shangina, A. E. Шаньгина, А. Е. A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem |
description |
Modular arithmetic, used in solving tasks related to increasing the productivity, reliability and safety of stand-alone devices. The limited computing resources of devices imposes significant limitations on the computational complexity of the algorithms used. To effectively use the Residue Number System (RNS), we must reduce the complexity of the Residue-to-Binary Converter. We propose the criteria for selecting the parameters of the RNS for effective implementation. Approximate Chinese Remainder Theorem allows reducing the computational complexity from square to linear-logarithmic by using the recursive matching method Wang |
format |
Статья |
author |
Kucherov, N. N. Кучеров, Н. Н. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. Shangina, A. E. Шаньгина, А. Е. |
author_facet |
Kucherov, N. N. Кучеров, Н. Н. Kuchukov, V. A. Кучуков, В. А. Kuchukova, N. N. Кучукова, Н. Н. Shangina, A. E. Шаньгина, А. Е. |
author_sort |
Kucherov, N. N. |
title |
A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem |
title_short |
A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem |
title_full |
A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem |
title_fullStr |
A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem |
title_full_unstemmed |
A high-speed residue-to-binary converter based on approximate Chinese Remainder Theorem |
title_sort |
high-speed residue-to-binary converter based on approximate chinese remainder theorem |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2018 |
url |
https://www.scopus.com/record/display.uri?eid=2-s2.0-85047996726&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=762e6d30544023d6a322a94577ba172b&sot=afnl&sdt=afsp&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=19&citeCnt=0&searchTerm= https://dspace.ncfu.ru:443/handle/20.500.12258/615 |
work_keys_str_mv |
AT kucherovnn ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kučerovnn ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kuchukovva ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kučukovva ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kuchukovann ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kučukovann ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT shanginaae ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT šanʹginaae ahighspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kucherovnn highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kučerovnn highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kuchukovva highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kučukovva highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kuchukovann highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT kučukovann highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT shanginaae highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem AT šanʹginaae highspeedresiduetobinaryconverterbasedonapproximatechineseremaindertheorem |
_version_ |
1760599939611623424 |