Přeskočit na obsah

Analysis of the quantization noise in discrete wavelet transform filters for image processing

In this paper, we analyze the noise quantization effects in coefficients of discrete wavelet transform (DWT) filter banks for image processing. We propose the implementation of the DWT method, making it possible to determine the effective bit-width of the filter banks coefficients at which the quant...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Chervyakov, N. I., Червяков, Н. И., Lyakhov, P. A., Ляхов, П. А.
Médium: Статья
Jazyk:English
Vydáno: MDPI AG 2018
Témata:
On-line přístup:https://www.scopus.com/record/display.uri?eid=2-s2.0-85051245977&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=North+Caucasus+Federal+University&sid=10b1f77d2c763d6e07c4167e3be12c85&sot=afnl&sdt=cl&cluster=scopubyr%2c%222018%22%2ct&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=5&citeCnt=0&searchTerm=
https://dspace.ncfu.ru/handle/20.500.12258/2860
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
id oai:10.200.131.19:20.500.12258-2860
record_format dspace
spelling oai:10.200.131.19:20.500.12258-28602018-09-25T10:10:08Z Analysis of the quantization noise in discrete wavelet transform filters for image processing Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Bit-width Digital image processing Discrete wavelet transform Fixed-point numbers Quantization noise In this paper, we analyze the noise quantization effects in coefficients of discrete wavelet transform (DWT) filter banks for image processing. We propose the implementation of the DWT method, making it possible to determine the effective bit-width of the filter banks coefficients at which the quantization noise does not significantly affect the image processing results according to the peak signal-to-noise ratio (PSNR). The dependence between the PSNR of the DWT image quality on the wavelet and the bit-width of the wavelet filter coefficients is analyzed. The formulas for determining the minimal bit-width of the filter coefficients at which the processed image achieves high quality (PSNR ≥ 40 dB) are given. The obtained theoretical results were confirmed through the simulation of DWT for a test image using the calculated bit-width values. All considered algorithms operate with fixed-point numbers, which simplifies their hardware implementation on modern devices: field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), etc 2018-08-30T13:00:49Z 2018-08-30T13:00:49Z 2018 Статья Chervyakov, N., Lyakhov, P., Kaplun, D., Butusov, D., Nagornov, N. Analysis of the quantization noise in discrete wavelet transform filters for image processing // Electronics (Switzerland). - 2018. - Volume 7. - Issue 8. - Номер статьи 135 https://www.scopus.com/record/display.uri?eid=2-s2.0-85051245977&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=North+Caucasus+Federal+University&sid=10b1f77d2c763d6e07c4167e3be12c85&sot=afnl&sdt=cl&cluster=scopubyr%2c%222018%22%2ct&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=5&citeCnt=0&searchTerm= http://hdl.handle.net/20.500.12258/2860 en Electronics (Switzerland) application/pdf application/pdf MDPI AG
institution СКФУ
collection Репозиторий
language English
topic Bit-width
Digital image processing
Discrete wavelet transform
Fixed-point numbers
Quantization noise
spellingShingle Bit-width
Digital image processing
Discrete wavelet transform
Fixed-point numbers
Quantization noise
Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
Analysis of the quantization noise in discrete wavelet transform filters for image processing
description In this paper, we analyze the noise quantization effects in coefficients of discrete wavelet transform (DWT) filter banks for image processing. We propose the implementation of the DWT method, making it possible to determine the effective bit-width of the filter banks coefficients at which the quantization noise does not significantly affect the image processing results according to the peak signal-to-noise ratio (PSNR). The dependence between the PSNR of the DWT image quality on the wavelet and the bit-width of the wavelet filter coefficients is analyzed. The formulas for determining the minimal bit-width of the filter coefficients at which the processed image achieves high quality (PSNR ≥ 40 dB) are given. The obtained theoretical results were confirmed through the simulation of DWT for a test image using the calculated bit-width values. All considered algorithms operate with fixed-point numbers, which simplifies their hardware implementation on modern devices: field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), etc
format Статья
author Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
author_facet Chervyakov, N. I.
Червяков, Н. И.
Lyakhov, P. A.
Ляхов, П. А.
author_sort Chervyakov, N. I.
title Analysis of the quantization noise in discrete wavelet transform filters for image processing
title_short Analysis of the quantization noise in discrete wavelet transform filters for image processing
title_full Analysis of the quantization noise in discrete wavelet transform filters for image processing
title_fullStr Analysis of the quantization noise in discrete wavelet transform filters for image processing
title_full_unstemmed Analysis of the quantization noise in discrete wavelet transform filters for image processing
title_sort analysis of the quantization noise in discrete wavelet transform filters for image processing
publisher MDPI AG
publishDate 2018
url https://www.scopus.com/record/display.uri?eid=2-s2.0-85051245977&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=North+Caucasus+Federal+University&sid=10b1f77d2c763d6e07c4167e3be12c85&sot=afnl&sdt=cl&cluster=scopubyr%2c%222018%22%2ct&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=5&citeCnt=0&searchTerm=
https://dspace.ncfu.ru/handle/20.500.12258/2860
work_keys_str_mv AT chervyakovni analysisofthequantizationnoiseindiscretewavelettransformfiltersforimageprocessing
AT červâkovni analysisofthequantizationnoiseindiscretewavelettransformfiltersforimageprocessing
AT lyakhovpa analysisofthequantizationnoiseindiscretewavelettransformfiltersforimageprocessing
AT lâhovpa analysisofthequantizationnoiseindiscretewavelettransformfiltersforimageprocessing
_version_ 1760531718441271296