Analysis of the quantization noise in discrete wavelet transform filters for image processing
In this paper, we analyze the noise quantization effects in coefficients of discrete wavelet transform (DWT) filter banks for image processing. We propose the implementation of the DWT method, making it possible to determine the effective bit-width of the filter banks coefficients at which the quant...
Uloženo v:
Hlavní autoři: | , , , |
---|---|
Médium: | Статья |
Jazyk: | English |
Vydáno: |
MDPI AG
2018
|
Témata: | |
On-line přístup: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85051245977&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=North+Caucasus+Federal+University&sid=10b1f77d2c763d6e07c4167e3be12c85&sot=afnl&sdt=cl&cluster=scopubyr%2c%222018%22%2ct&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=5&citeCnt=0&searchTerm= https://dspace.ncfu.ru/handle/20.500.12258/2860 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
id |
oai:10.200.131.19:20.500.12258-2860 |
---|---|
record_format |
dspace |
spelling |
oai:10.200.131.19:20.500.12258-28602018-09-25T10:10:08Z Analysis of the quantization noise in discrete wavelet transform filters for image processing Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Bit-width Digital image processing Discrete wavelet transform Fixed-point numbers Quantization noise In this paper, we analyze the noise quantization effects in coefficients of discrete wavelet transform (DWT) filter banks for image processing. We propose the implementation of the DWT method, making it possible to determine the effective bit-width of the filter banks coefficients at which the quantization noise does not significantly affect the image processing results according to the peak signal-to-noise ratio (PSNR). The dependence between the PSNR of the DWT image quality on the wavelet and the bit-width of the wavelet filter coefficients is analyzed. The formulas for determining the minimal bit-width of the filter coefficients at which the processed image achieves high quality (PSNR ≥ 40 dB) are given. The obtained theoretical results were confirmed through the simulation of DWT for a test image using the calculated bit-width values. All considered algorithms operate with fixed-point numbers, which simplifies their hardware implementation on modern devices: field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), etc 2018-08-30T13:00:49Z 2018-08-30T13:00:49Z 2018 Статья Chervyakov, N., Lyakhov, P., Kaplun, D., Butusov, D., Nagornov, N. Analysis of the quantization noise in discrete wavelet transform filters for image processing // Electronics (Switzerland). - 2018. - Volume 7. - Issue 8. - Номер статьи 135 https://www.scopus.com/record/display.uri?eid=2-s2.0-85051245977&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=North+Caucasus+Federal+University&sid=10b1f77d2c763d6e07c4167e3be12c85&sot=afnl&sdt=cl&cluster=scopubyr%2c%222018%22%2ct&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=5&citeCnt=0&searchTerm= http://hdl.handle.net/20.500.12258/2860 en Electronics (Switzerland) application/pdf application/pdf MDPI AG |
institution |
СКФУ |
collection |
Репозиторий |
language |
English |
topic |
Bit-width Digital image processing Discrete wavelet transform Fixed-point numbers Quantization noise |
spellingShingle |
Bit-width Digital image processing Discrete wavelet transform Fixed-point numbers Quantization noise Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. Analysis of the quantization noise in discrete wavelet transform filters for image processing |
description |
In this paper, we analyze the noise quantization effects in coefficients of discrete wavelet transform (DWT) filter banks for image processing. We propose the implementation of the DWT method, making it possible to determine the effective bit-width of the filter banks coefficients at which the quantization noise does not significantly affect the image processing results according to the peak signal-to-noise ratio (PSNR). The dependence between the PSNR of the DWT image quality on the wavelet and the bit-width of the wavelet filter coefficients is analyzed. The formulas for determining the minimal bit-width of the filter coefficients at which the processed image achieves high quality (PSNR ≥ 40 dB) are given. The obtained theoretical results were confirmed through the simulation of DWT for a test image using the calculated bit-width values. All considered algorithms operate with fixed-point numbers, which simplifies their hardware implementation on modern devices: field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), etc |
format |
Статья |
author |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. |
author_facet |
Chervyakov, N. I. Червяков, Н. И. Lyakhov, P. A. Ляхов, П. А. |
author_sort |
Chervyakov, N. I. |
title |
Analysis of the quantization noise in discrete wavelet transform filters for image processing |
title_short |
Analysis of the quantization noise in discrete wavelet transform filters for image processing |
title_full |
Analysis of the quantization noise in discrete wavelet transform filters for image processing |
title_fullStr |
Analysis of the quantization noise in discrete wavelet transform filters for image processing |
title_full_unstemmed |
Analysis of the quantization noise in discrete wavelet transform filters for image processing |
title_sort |
analysis of the quantization noise in discrete wavelet transform filters for image processing |
publisher |
MDPI AG |
publishDate |
2018 |
url |
https://www.scopus.com/record/display.uri?eid=2-s2.0-85051245977&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=North+Caucasus+Federal+University&sid=10b1f77d2c763d6e07c4167e3be12c85&sot=afnl&sdt=cl&cluster=scopubyr%2c%222018%22%2ct&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=5&citeCnt=0&searchTerm= https://dspace.ncfu.ru/handle/20.500.12258/2860 |
work_keys_str_mv |
AT chervyakovni analysisofthequantizationnoiseindiscretewavelettransformfiltersforimageprocessing AT červâkovni analysisofthequantizationnoiseindiscretewavelettransformfiltersforimageprocessing AT lyakhovpa analysisofthequantizationnoiseindiscretewavelettransformfiltersforimageprocessing AT lâhovpa analysisofthequantizationnoiseindiscretewavelettransformfiltersforimageprocessing |
_version_ |
1760531718441271296 |