Пропуск в контексте

Algebraic General Topology Монография

ABSTRACT. In this work I introduce and study in details the concepts of funcoids which generalize proximity spaces and reloids which generalize uniform spaces and generalizations thereof. The concept of funcoid is generalized concept of proximity the concept of reloid is cleared from superfluous det...

Полное описание

Сохранить в:
Библиографические подробности
Главный автор: Портон В.Л
Формат: Монография
Редакция:1
Серии:Научная мысль
Online-ссылка:https://znanium.com/catalog/document?id=347707
https://znanium.com/cover/1058/1058535.jpg
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
LEADER 02916nam0a2200313 i 4500
001 RU\infra-m\znanium\bibl\1058535
003 https://znanium.com/catalog/document?id=347707
005 20250213000000.0
010 |a 978-5-16-108176-1  |b электр. издание 
100 |a 20250213d2019 m y0rusy0150 ca 
101 0 |a rus 
102 |a RU 
200 1 |a Algebraic General Topology  |e Монография 
205 |a 1 
210 1 |a Москва  |c ООО "Научно-издательский центр ИНФРА-М"  |d 2019 
215 |a 395 с. 
225 1 |a Научная мысль 
330 |a ABSTRACT. In this work I introduce and study in details the concepts of funcoids which generalize proximity spaces and reloids which generalize uniform spaces and generalizations thereof. The concept of funcoid is generalized concept of proximity the concept of reloid is cleared from superfluous details (generalized) concept of uniformity. Also funcoids and reloids are generalizations of binary relations whose domains and ranges are filters (instead of sets). Also funcoids and reloids can be considered as a generalization of (oriented) graphs this provides us with a common generalization of calculus and discrete mathematics. It is defined a generalization of limit for arbitrary (including discontinuous and multivalued) functions what allows to define for example derivative of an arbitrary real function. The concept of continuity is defined by an algebraic formula (instead of old messy epsilon-delta notation) for arbitrary morphisms (including funcoids and reloids) of a partially ordered category. In one formula continuity proximity continuity and uniform continuity are generalized. Also I define connectedness for funcoids and reloids. Then I consider generalizations of funcoids: pointfree funcoids and generalization of pointfree funcoids: staroids and multifuncoids. Also I define several kinds of products of funcoids and other morphisms. Before going to topology this book studies properties of co-brouwerian lattices and filters. 
333 |a Дополнительное профессиональное образование 
606 |a Физико-математические науки  |x Алгебра,линейная алгебра и аналитическая геометрия  |2 local 
608 |a Монография  |2 local 
675 |a 512(075.4)  |z rus 
686 |a 22.152  |2 rubbk 
686 |a 01.06.01  |2 okso 
686 |a 02.06.01  |2 okso 
700 1 |a Портон  |b В.Л.  |g Виктор Львович 
801 0 |a RU  |b Общество с ограниченной ответственностью «ЗНАНИУМ»  |c 20190902  |2 rusmarc 
856 4 |a znanium.com  |m ebs_support@infra-m.ru  |n НИЦ ИНФРА-М  |u https://znanium.com/catalog/document?id=347707 
856 4 1 |a znanium.com  |d /cover/1058  |f 1058535.jpg  |q image/jpeg  |u https://znanium.com/cover/1058/1058535.jpg