Интеллектуальное моделирование сегментации торговых центров на основе самоорганизующихся карт Кохонена Статья
Исследуется проблема структуризации рынка торговых центров. В отличие от традиционных экспертных и опросных методов предложены методики сегментации торговых центров на основе количественных характеристик. Определены характеристики торговых центров оказывающие наибольшее влияние на их популярность и...
Сохранить в:
主要作者: | |
---|---|
格式: | Статья |
在线阅读: | https://znanium.com/catalog/document?id=86913 https://znanium.com/cover/0475/475032.jpg |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
总结: | Исследуется проблема структуризации рынка торговых центров. В отличие от традиционных экспертных и опросных методов предложены методики сегментации торговых центров на основе количественных характеристик. Определены характеристики торговых центров оказывающие наибольшее влияние на их популярность и посещаемость. С точки зрения моделирования необходимо решить задачу кластеризации перспективным инструментом решения которой является нейросетевой алгоритм обучения «без учителя» - самоорганизующиеся карты Кохонена (Self Organizing Maps). С целью получения устойчивости оценок применен байесовский подход к регуляризации нейросетей. В результате моделирования на данных по торговым центрам г. Уфы получены устойчивые оценки которые позволили сделать выводы и практические рекомендации для принятия решений о дальнейшем развитии данного сектора и повышения прозрачности рынка. Визуальный анализ расположения торговых центров на карте с сегментацией по кластерам позволяет сделать вывод о степени насыщения торговыми центрами районов и микрорайонов города что в свою очередь позволяет контролировать количество строящихся торговых центров в городе а также принимать обоснованные решения о размещении планируемых торговых центров. |
---|