On Some arithmetic applications to the theory of symmetric groups
The work is devoted to some arithmetic applications to the theory of symmetric groups. Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group Sn of degree n of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisn...
Сохранить в:
| Главные авторы: | , , , |
|---|---|
| Формат: | Статья |
| Язык: | Russian |
| Опубликовано: |
State Lev Tolstoy Pedagogical University
2024
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/29283 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| id |
ir-123456789-29283 |
|---|---|
| record_format |
dspace |
| spelling |
ir-123456789-292832024-11-28T13:13:15Z On Some arithmetic applications to the theory of symmetric groups О некоторых арифметических применениях к теории симметрических групп Pachev, U. M. Пачев, У. М. Dokhov, R. A. Дохов, Р. А. Euler function Symmetric group Modulo congruence Permutation polynomial Prime divisor of cyclic subgroup order Subgroup order Quadratic residnes Substitution sign The work is devoted to some arithmetic applications to the theory of symmetric groups. Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group Sn of degree n of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisned k, φ(k), and kφ(k), where k ≤ n, φ – Euler function, those representations jf grups (Z/kZ, +), (Z/kZ)* and theorem product in the form of degree substitutions k. In this case isomorphic embeddings of these groups are constructed following the proof of Cayley’s theorem, but along with this, a linear binomial is used Z/kZ residue class rings, where gcd (a, k) = 1. In addition, the result concerning the isomorphic embedding of a group (Z/kZ)* in to a group (Z/kZ)* in to a group Sk extends to an alternating group Ak for odd k. The second part of the work examines some applications of prime number theory to cyclic subgroups of the symmetric group Sn. In particular, applying the Euler-Maclaurin summation formula and bounds for the k in prime, a lower bound for maximum number of prime divisors of cyclic orders in the summetric group Sn. 2024-11-28T13:12:08Z 2024-11-28T13:12:08Z 2023 Статья Pachev U.M., Dokhov R.A., Kodzokov A.K., Nirova M.S. On Some arithmetic applications to the theory of symmetric groups // Chebyshevskii Sbornik. - 2023. - 24 (4). - pp. 252 - 263. - DOI: 10.22405/2226-8383-2023-24-4-252-263 https://dspace.ncfu.ru/handle/123456789/29283 ru Chebyshevskii Sbornik application/pdf State Lev Tolstoy Pedagogical University |
| institution |
СКФУ |
| collection |
Репозиторий |
| language |
Russian |
| topic |
Euler function Symmetric group Modulo congruence Permutation polynomial Prime divisor of cyclic subgroup order Subgroup order Quadratic residnes Substitution sign |
| spellingShingle |
Euler function Symmetric group Modulo congruence Permutation polynomial Prime divisor of cyclic subgroup order Subgroup order Quadratic residnes Substitution sign Pachev, U. M. Пачев, У. М. Dokhov, R. A. Дохов, Р. А. On Some arithmetic applications to the theory of symmetric groups |
| description |
The work is devoted to some arithmetic applications to the theory of symmetric groups. Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group Sn of degree n of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisned k, φ(k), and kφ(k), where k ≤ n, φ – Euler function, those representations jf grups (Z/kZ, +), (Z/kZ)* and theorem product in the form of degree substitutions k. In this case isomorphic embeddings of these groups are constructed following the proof of Cayley’s theorem, but along with this, a linear binomial is used Z/kZ residue class rings, where gcd (a, k) = 1. In addition, the result concerning the isomorphic embedding of a group (Z/kZ)* in to a group (Z/kZ)* in to a group Sk extends to an alternating group Ak for odd k. The second part of the work examines some applications of prime number theory to cyclic subgroups of the symmetric group Sn. In particular, applying the Euler-Maclaurin summation formula and bounds for the k in prime, a lower bound for maximum number of prime divisors of cyclic orders in the summetric group Sn. |
| format |
Статья |
| author |
Pachev, U. M. Пачев, У. М. Dokhov, R. A. Дохов, Р. А. |
| author_facet |
Pachev, U. M. Пачев, У. М. Dokhov, R. A. Дохов, Р. А. |
| author_sort |
Pachev, U. M. |
| title |
On Some arithmetic applications to the theory of symmetric groups |
| title_short |
On Some arithmetic applications to the theory of symmetric groups |
| title_full |
On Some arithmetic applications to the theory of symmetric groups |
| title_fullStr |
On Some arithmetic applications to the theory of symmetric groups |
| title_full_unstemmed |
On Some arithmetic applications to the theory of symmetric groups |
| title_sort |
on some arithmetic applications to the theory of symmetric groups |
| publisher |
State Lev Tolstoy Pedagogical University |
| publishDate |
2024 |
| url |
https://dspace.ncfu.ru/handle/123456789/29283 |
| work_keys_str_mv |
AT pachevum onsomearithmeticapplicationstothetheoryofsymmetricgroups AT pačevum onsomearithmeticapplicationstothetheoryofsymmetricgroups AT dokhovra onsomearithmeticapplicationstothetheoryofsymmetricgroups AT dohovra onsomearithmeticapplicationstothetheoryofsymmetricgroups AT pachevum onekotoryharifmetičeskihprimeneniâhkteoriisimmetričeskihgrupp AT pačevum onekotoryharifmetičeskihprimeneniâhkteoriisimmetričeskihgrupp AT dokhovra onekotoryharifmetičeskihprimeneniâhkteoriisimmetričeskihgrupp AT dohovra onekotoryharifmetičeskihprimeneniâhkteoriisimmetričeskihgrupp |
| _version_ |
1842245714180046848 |