Пропуск в контексте

On Some arithmetic applications to the theory of symmetric groups

The work is devoted to some arithmetic applications to the theory of symmetric groups. Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group Sn of degree n of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisn...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Pachev, U. M., Пачев, У. М., Dokhov, R. A., Дохов, Р. А.
Формат: Статья
Язык:Russian
Опубликовано: State Lev Tolstoy Pedagogical University 2024
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/29283
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-29283
record_format dspace
spelling ir-123456789-292832024-11-28T13:13:15Z On Some arithmetic applications to the theory of symmetric groups О некоторых арифметических применениях к теории симметрических групп Pachev, U. M. Пачев, У. М. Dokhov, R. A. Дохов, Р. А. Euler function Symmetric group Modulo congruence Permutation polynomial Prime divisor of cyclic subgroup order Subgroup order Quadratic residnes Substitution sign The work is devoted to some arithmetic applications to the theory of symmetric groups. Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group Sn of degree n of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisned k, φ(k), and kφ(k), where k ≤ n, φ – Euler function, those representations jf grups (Z/kZ, +), (Z/kZ)* and theorem product in the form of degree substitutions k. In this case isomorphic embeddings of these groups are constructed following the proof of Cayley’s theorem, but along with this, a linear binomial is used Z/kZ residue class rings, where gcd (a, k) = 1. In addition, the result concerning the isomorphic embedding of a group (Z/kZ)* in to a group (Z/kZ)* in to a group Sk extends to an alternating group Ak for odd k. The second part of the work examines some applications of prime number theory to cyclic subgroups of the symmetric group Sn. In particular, applying the Euler-Maclaurin summation formula and bounds for the k in prime, a lower bound for maximum number of prime divisors of cyclic orders in the summetric group Sn. 2024-11-28T13:12:08Z 2024-11-28T13:12:08Z 2023 Статья Pachev U.M., Dokhov R.A., Kodzokov A.K., Nirova M.S. On Some arithmetic applications to the theory of symmetric groups // Chebyshevskii Sbornik. - 2023. - 24 (4). - pp. 252 - 263. - DOI: 10.22405/2226-8383-2023-24-4-252-263 https://dspace.ncfu.ru/handle/123456789/29283 ru Chebyshevskii Sbornik application/pdf State Lev Tolstoy Pedagogical University
institution СКФУ
collection Репозиторий
language Russian
topic Euler function
Symmetric group
Modulo congruence
Permutation polynomial
Prime divisor of cyclic subgroup order
Subgroup order
Quadratic residnes
Substitution sign
spellingShingle Euler function
Symmetric group
Modulo congruence
Permutation polynomial
Prime divisor of cyclic subgroup order
Subgroup order
Quadratic residnes
Substitution sign
Pachev, U. M.
Пачев, У. М.
Dokhov, R. A.
Дохов, Р. А.
On Some arithmetic applications to the theory of symmetric groups
description The work is devoted to some arithmetic applications to the theory of symmetric groups. Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group Sn of degree n of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisned k, φ(k), and kφ(k), where k ≤ n, φ – Euler function, those representations jf grups (Z/kZ, +), (Z/kZ)* and theorem product in the form of degree substitutions k. In this case isomorphic embeddings of these groups are constructed following the proof of Cayley’s theorem, but along with this, a linear binomial is used Z/kZ residue class rings, where gcd (a, k) = 1. In addition, the result concerning the isomorphic embedding of a group (Z/kZ)* in to a group (Z/kZ)* in to a group Sk extends to an alternating group Ak for odd k. The second part of the work examines some applications of prime number theory to cyclic subgroups of the symmetric group Sn. In particular, applying the Euler-Maclaurin summation formula and bounds for the k in prime, a lower bound for maximum number of prime divisors of cyclic orders in the summetric group Sn.
format Статья
author Pachev, U. M.
Пачев, У. М.
Dokhov, R. A.
Дохов, Р. А.
author_facet Pachev, U. M.
Пачев, У. М.
Dokhov, R. A.
Дохов, Р. А.
author_sort Pachev, U. M.
title On Some arithmetic applications to the theory of symmetric groups
title_short On Some arithmetic applications to the theory of symmetric groups
title_full On Some arithmetic applications to the theory of symmetric groups
title_fullStr On Some arithmetic applications to the theory of symmetric groups
title_full_unstemmed On Some arithmetic applications to the theory of symmetric groups
title_sort on some arithmetic applications to the theory of symmetric groups
publisher State Lev Tolstoy Pedagogical University
publishDate 2024
url https://dspace.ncfu.ru/handle/123456789/29283
work_keys_str_mv AT pachevum onsomearithmeticapplicationstothetheoryofsymmetricgroups
AT pačevum onsomearithmeticapplicationstothetheoryofsymmetricgroups
AT dokhovra onsomearithmeticapplicationstothetheoryofsymmetricgroups
AT dohovra onsomearithmeticapplicationstothetheoryofsymmetricgroups
AT pachevum onekotoryharifmetičeskihprimeneniâhkteoriisimmetričeskihgrupp
AT pačevum onekotoryharifmetičeskihprimeneniâhkteoriisimmetričeskihgrupp
AT dokhovra onekotoryharifmetičeskihprimeneniâhkteoriisimmetričeskihgrupp
AT dohovra onekotoryharifmetičeskihprimeneniâhkteoriisimmetričeskihgrupp
_version_ 1842245714180046848