Пропуск в контексте

Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent

In this paper we propose the fractional gradient descent for increasing the training and work of modern neural networks. This optimizer searches the global minimum of the loss function considering the fractional gradient directions achieved by Riemann-Liouville, Caputo, and Grunwald-Letnikov derivat...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Abdulkadirov, R. I., Абдулкадиров, Р. И., Lyakhov, P. A., Ляхов, П. А., Baboshina, V. A., Бабошина, В. А., Nagornov, N. N., Нагорнов, Н. Н.
Формат: Статья
Язык:English
Опубликовано: Institute of Electrical and Electronics Engineers Inc. 2024
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/29336
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-29336
record_format dspace
spelling ir-123456789-293362024-12-06T13:27:52Z Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Baboshina, V. A. Бабошина, В. А. Nagornov, N. N. Нагорнов, Н. Н. Caputo Stochastic gradient descent Convolutional neural networks Fractional derivatives of Riemann-Liouville Grunwald-Letnikov Multilayer perceptron Optimization algorithms In this paper we propose the fractional gradient descent for increasing the training and work of modern neural networks. This optimizer searches the global minimum of the loss function considering the fractional gradient directions achieved by Riemann-Liouville, Caputo, and Grunwald-Letnikov derivatives. The adjusting of size and direction of the fractional gradient, supported by momentum and Nesterov condition, let the proposed optimizer descend into the global minimum of loss functions of neural networks. Utilizing the proposed optimization algorithm in a linear neural network and a visual transformer lets us attain higher accuracy, precision, recall, Macro F1 score by 1.8-4 percentage points than known analogs than state-of-the-art methods in solving pattern recognition problems on images from MNIST and CIFAR10 datasets. Further research of fractional calculus in modern neural network methodology can improve the quality of solving various challenges such as pattern recognition, time series forecasting, moving object detection, and data generation. 2024-12-06T13:26:29Z 2024-12-06T13:26:29Z 2024 Статья Abdulkadirov, R.I., Lyakhov, P.A., Baboshina, V.A., Nagornov, N.N. Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent // IEEE Access. - 2024. - 12. - pp. 168428-168444. - DOI: 10.1109/ACCESS.2024.3491614 https://dspace.ncfu.ru/handle/123456789/29336 en IEEE Access application/pdf application/pdf Institute of Electrical and Electronics Engineers Inc.
institution СКФУ
collection Репозиторий
language English
topic Caputo
Stochastic gradient descent
Convolutional neural networks
Fractional derivatives of Riemann-Liouville
Grunwald-Letnikov
Multilayer perceptron
Optimization algorithms
spellingShingle Caputo
Stochastic gradient descent
Convolutional neural networks
Fractional derivatives of Riemann-Liouville
Grunwald-Letnikov
Multilayer perceptron
Optimization algorithms
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Baboshina, V. A.
Бабошина, В. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
description In this paper we propose the fractional gradient descent for increasing the training and work of modern neural networks. This optimizer searches the global minimum of the loss function considering the fractional gradient directions achieved by Riemann-Liouville, Caputo, and Grunwald-Letnikov derivatives. The adjusting of size and direction of the fractional gradient, supported by momentum and Nesterov condition, let the proposed optimizer descend into the global minimum of loss functions of neural networks. Utilizing the proposed optimization algorithm in a linear neural network and a visual transformer lets us attain higher accuracy, precision, recall, Macro F1 score by 1.8-4 percentage points than known analogs than state-of-the-art methods in solving pattern recognition problems on images from MNIST and CIFAR10 datasets. Further research of fractional calculus in modern neural network methodology can improve the quality of solving various challenges such as pattern recognition, time series forecasting, moving object detection, and data generation.
format Статья
author Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Baboshina, V. A.
Бабошина, В. А.
Nagornov, N. N.
Нагорнов, Н. Н.
author_facet Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Baboshina, V. A.
Бабошина, В. А.
Nagornov, N. N.
Нагорнов, Н. Н.
author_sort Abdulkadirov, R. I.
title Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
title_short Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
title_full Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
title_fullStr Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
title_full_unstemmed Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
title_sort improving the accuracy of neural network pattern recognition by fractional gradient descent
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2024
url https://dspace.ncfu.ru/handle/123456789/29336
work_keys_str_mv AT abdulkadirovri improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent
AT abdulkadirovri improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent
AT lyakhovpa improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent
AT lâhovpa improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent
AT baboshinava improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent
AT babošinava improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent
AT nagornovnn improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent
AT nagornovnn improvingtheaccuracyofneuralnetworkpatternrecognitionbyfractionalgradientdescent
_version_ 1842245855413796864