تخطي إلى المحتوى

High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks

Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving ne...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Lapina, M. A., Лапина, М. А., Shiriaev, E. M., Ширяев, Е. М., Babenko, M. G., Бабенко, М. Г.
التنسيق: Статья
اللغة:English
منشور في: Pleiades Publishing 2024
الموضوعات:
الوصول للمادة أونلاين:https://dspace.ncfu.ru/handle/123456789/29339
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id ir-123456789-29339
record_format dspace
spelling ir-123456789-293392024-12-09T13:02:05Z High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks Lapina, M. A. Лапина, М. А. Shiriaev, E. M. Ширяев, Е. М. Babenko, M. G. Бабенко, М. Г. Convolutional neural networks Spatial complexity Cryptography Differential privacy High Speed Ho-momorphic encryptions Homomorphic-encryptions Information policy Legal restriction Multiplication algorithms Scalar multiplication Privacy preserving Neural-networks Convolution Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving neural networks are used to design solutions that utilize neural networks under these conditions. They exploit the homomorphic encryption mechanism, thus enabling the security of commercial information in the cloud. The main deterrent to the use of privacy-preserving neural networks is the large computational and spatial complexity of the scalar multiplication algorithm, which is the basic algorithm for computing mathematical convolution. In this paper, we propose a scalar multiplication algorithm that reduces the spatial complexity from quadratic to linear, and reduces the computation time of scalar multiplication by a factor of 1.38. 2024-12-09T13:01:09Z 2024-12-09T13:01:09Z 2024 Статья Lapina, M.A., Shiriaev, E.M., Babenko, M.G., Istamov, I. High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks // Programming and Computer Software. - 2024. - 50 (6). - pp. 417-424. - DOI: 10.1134/S0361768824700282 https://dspace.ncfu.ru/handle/123456789/29339 en Programming and Computer Software application/pdf application/pdf Pleiades Publishing
institution СКФУ
collection Репозиторий
language English
topic Convolutional neural networks
Spatial complexity
Cryptography
Differential privacy
High Speed
Ho-momorphic encryptions
Homomorphic-encryptions
Information policy
Legal restriction
Multiplication algorithms
Scalar multiplication
Privacy preserving
Neural-networks
Convolution
spellingShingle Convolutional neural networks
Spatial complexity
Cryptography
Differential privacy
High Speed
Ho-momorphic encryptions
Homomorphic-encryptions
Information policy
Legal restriction
Multiplication algorithms
Scalar multiplication
Privacy preserving
Neural-networks
Convolution
Lapina, M. A.
Лапина, М. А.
Shiriaev, E. M.
Ширяев, Е. М.
Babenko, M. G.
Бабенко, М. Г.
High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
description Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving neural networks are used to design solutions that utilize neural networks under these conditions. They exploit the homomorphic encryption mechanism, thus enabling the security of commercial information in the cloud. The main deterrent to the use of privacy-preserving neural networks is the large computational and spatial complexity of the scalar multiplication algorithm, which is the basic algorithm for computing mathematical convolution. In this paper, we propose a scalar multiplication algorithm that reduces the spatial complexity from quadratic to linear, and reduces the computation time of scalar multiplication by a factor of 1.38.
format Статья
author Lapina, M. A.
Лапина, М. А.
Shiriaev, E. M.
Ширяев, Е. М.
Babenko, M. G.
Бабенко, М. Г.
author_facet Lapina, M. A.
Лапина, М. А.
Shiriaev, E. M.
Ширяев, Е. М.
Babenko, M. G.
Бабенко, М. Г.
author_sort Lapina, M. A.
title High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
title_short High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
title_full High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
title_fullStr High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
title_full_unstemmed High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
title_sort high-speed convolution core architecture for privacy-preserving neural networks
publisher Pleiades Publishing
publishDate 2024
url https://dspace.ncfu.ru/handle/123456789/29339
work_keys_str_mv AT lapinama highspeedconvolutioncorearchitectureforprivacypreservingneuralnetworks
AT lapinama highspeedconvolutioncorearchitectureforprivacypreservingneuralnetworks
AT shiriaevem highspeedconvolutioncorearchitectureforprivacypreservingneuralnetworks
AT širâevem highspeedconvolutioncorearchitectureforprivacypreservingneuralnetworks
AT babenkomg highspeedconvolutioncorearchitectureforprivacypreservingneuralnetworks
AT babenkomg highspeedconvolutioncorearchitectureforprivacypreservingneuralnetworks
_version_ 1842245714811289600