High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving ne...
Zapisane w:
| Główni autorzy: | Lapina, M. A., Лапина, М. А., Shiriaev, E. M., Ширяев, Е. М., Babenko, M. G., Бабенко, М. Г. |
|---|---|
| Format: | Статья |
| Język: | English |
| Wydane: |
Pleiades Publishing
2024
|
| Hasła przedmiotowe: | |
| Dostęp online: | https://dspace.ncfu.ru/handle/123456789/29339 |
| Etykiety: |
Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
|
Podobne zapisy
-
Enhancing Cloud Security through Efficient Polynomial Approximations for Homomorphic Evaluation of Neural Network Activation Functions
od: Babenko, M. G., i wsp.
Wydane: (2024) -
An Approximate Algorithm for Determining the Sign Function of a Number Using Neural Network Methods
od: Shiriaev, E. M., i wsp.
Wydane: (2024) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
od: Abdulkadirov, R. I., i wsp.
Wydane: (2024) -
Neural network technologies in economics study aid
od: Kovalenko, A. V. -
Hardware and software implementation of neural network control of power systems based on the system of residual classes
od: Tikhonov, E. E., i wsp.
Wydane: (2020)