High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks
Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving ne...
Сохранить в:
| Главные авторы: | Lapina, M. A., Лапина, М. А., Shiriaev, E. M., Ширяев, Е. М., Babenko, M. G., Бабенко, М. Г. |
|---|---|
| 格式: | Статья |
| 語言: | English |
| 出版: |
Pleiades Publishing
2024
|
| 主題: | |
| 在線閱讀: | https://dspace.ncfu.ru/handle/123456789/29339 |
| 標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Enhancing Cloud Security through Efficient Polynomial Approximations for Homomorphic Evaluation of Neural Network Activation Functions
由: Babenko, M. G., и др.
出版: (2024) -
An Approximate Algorithm for Determining the Sign Function of a Number Using Neural Network Methods
由: Shiriaev, E. M., и др.
出版: (2024) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
由: Abdulkadirov, R. I., и др.
出版: (2024) -
Neural network technologies in economics study aid
由: Kovalenko, A. V. -
Hardware and software implementation of neural network control of power systems based on the system of residual classes
由: Tikhonov, E. E., и др.
出版: (2020)