Пропуск в контексте

Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution

Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Alikhanov, A. A., Алиханов, А. А.
Формат: Статья
Язык:English
Опубликовано: Elsevier B.V. 2025
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/29619
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Краткое описание:Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−α+h4) via the energy method and demonstrated by numerical experiments. Our contributions, which improve some previous work, focus primarily on two aspects: (i) we develop a novel generalized L2 formula achieving O(τz3−α) accuracy; (ii) we derive an essential a priori estimate for a time-varying compact finite difference operator, ensuring the new numerical scheme is stable and convergent.