Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
Using a new generalized L2 formula and a time varying compact finite difference operator, we construct a high order numerical scheme for a class of generalized fractional diffusion equation with space–time varying diffusivity that admits a smooth solution. The convergence order is shown to be O(τz3−...
Enregistré dans:
| Auteurs principaux: | Alikhanov, A. A., Алиханов, А. А. |
|---|---|
| Format: | Статья |
| Langue: | English |
| Publié: |
Elsevier B.V.
2025
|
| Sujets: | |
| Accès en ligne: | https://dspace.ncfu.ru/handle/123456789/29619 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
par: Alikhanov, A. A., et autres
Publié: (2021) -
A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
par: Alikhanov, A. A., et autres
Publié: (2025) -
Analytical Solutions and Computer Modeling of a Boundary Value Problem for a Nonstationary System of Nernst–Planck–Poisson Equations in a Diffusion Layer
par: Chekanov, V. S., et autres
Publié: (2025) -
A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application
par: Alikhanov, A. A., et autres
Publié: (2024) -
Fabrication and characterization of LuAG: Er ceramics with high optical transmission
par: Kravtsov, A. A., et autres
Publié: (2025)