A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
This paper presents two high-order compact difference schemes to discuss the numerical solution of the one-dimensional and two-dimensional multi-term time-fractional convection-diffusion equation of the Sobolev type based on the Caputo fractional derivative. For this purpose, we employ the L2 formul...
Enregistré dans:
| Auteurs principaux: | Alikhanov, A. A., Алиханов, А. А., Shahbazi Asl, M., Шахбазиасль, М. |
|---|---|
| Format: | Статья |
| Langue: | English |
| Publié: |
Springer Nature
2025
|
| Sujets: | |
| Accès en ligne: | https://dspace.ncfu.ru/handle/123456789/29834 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
par: Alikhanov, A. A., et autres
Publié: (2025) -
Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
par: Alikhanov, A. A., et autres
Publié: (2021) -
Finite difference method for estimating the density of loess compacted by explosion
par: Tarasenko, E. O., et autres
Publié: (2025) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
par: Abdulkadirov, R. I., et autres
Publié: (2024) -
NUMERICAL SIMULATION OF GAS ATOM COORDINATE DISPERSION IN A MATHEMATICAL MODEL OF DEEP BLAST COMPACTION FOR SUBSIDENCE SOILS
par: Tarasenko, E. O., et autres
Publié: (2023)