A high-order compact difference scheme for the multi-term time-fractional Sobolev-type convection-diffusion equation
This paper presents two high-order compact difference schemes to discuss the numerical solution of the one-dimensional and two-dimensional multi-term time-fractional convection-diffusion equation of the Sobolev type based on the Caputo fractional derivative. For this purpose, we employ the L2 formul...
Сохранить в:
| Главные авторы: | Alikhanov, A. A., Алиханов, А. А., Shahbazi Asl, M., Шахбазиасль, М. |
|---|---|
| 格式: | Статья |
| 語言: | English |
| 出版: |
Springer Nature
2025
|
| 主題: | |
| 在線閱讀: | https://dspace.ncfu.ru/handle/123456789/29834 |
| 標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Numerical method for fractional sub-diffusion equation with space–time varying diffusivity and smooth solution
由: Alikhanov, A. A., и др.
出版: (2025) -
Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel
由: Alikhanov, A. A., и др.
出版: (2021) -
Finite difference method for estimating the density of loess compacted by explosion
由: Tarasenko, E. O., и др.
出版: (2025) -
Improving the Accuracy of Neural Network Pattern Recognition by Fractional Gradient Descent
由: Abdulkadirov, R. I., и др.
出版: (2024) -
NUMERICAL SIMULATION OF GAS ATOM COORDINATE DISPERSION IN A MATHEMATICAL MODEL OF DEEP BLAST COMPACTION FOR SUBSIDENCE SOILS
由: Tarasenko, E. O., и др.
出版: (2023)