Saltar ao contenido

Bidirectional Encoder representation from Image Transformers for recognizing sunflower diseases from photographs

This paper proposes a modern system for recognizing sunflower diseases based on Bidirectional Encoder representation from Image Transformers (BEIT). The proposed system is capable of recognizing various sunflower diseases with high accuracy. The presented research results demonstrate the advantages...

Descrición completa

Gardado en:
Detalles Bibliográficos
Главные авторы: Baboshina, V. A., Бабошина, В. А., Lyakhov, P. A., Ляхов, П. А., Lyakhova, U. A., Ляхова, У. А., Pismennyy, V. A., Письменный, В. А.
Formato: Статья
Idioma:English
Publicado: Institution of Russian Academy of Sciences 2025
Темы:
Acceso en liña:https://dspace.ncfu.ru/handle/123456789/30407
Метки: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
Descripción
Краткое описание:This paper proposes a modern system for recognizing sunflower diseases based on Bidirectional Encoder representation from Image Transformers (BEIT). The proposed system is capable of recognizing various sunflower diseases with high accuracy. The presented research results demonstrate the advantages of the proposed system compared to known methods and contempo-rary neural networks. The proposed visual diagnostic system for sunflower diseases achieved 99.57 % accuracy on the sunflower disease dataset, which is higher than that of known methods. The approach described in the work can serve as an auxiliary tool for farmers, assisting them in promptly identifying diseases and pests and taking timely measures to treat plants. This, in turn, helps in preserving and enhancing the yield. This work can have a significant impact on the de-velopment of agriculture and the fight against the global food shortage problem.