Пропуск в контексте

Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling

In this paper, we propose a physics-informed neural network controller for quadcopter dynamics modeling. Physics-aware machine learning methods, such as physics-informed neural networks, consider the UAV dynamics model, solving the system of ordinary differential equations entirely, unlike proportio...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Abdulkadirov, R. I., Абдулкадиров, Р. И., Lyakhov, P. A., Ляхов, П. А., Nagornov, N. N., Нагорнов, Н. Н., Kalita, D. I., Калита, Д. И.
Формат: Статья
Язык:English
Опубликовано: Multidisciplinary Digital Publishing Institute (MDPI) 2025
Темы:
Online-ссылка:https://dspace.ncfu.ru/handle/123456789/30442
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
id ir-123456789-30442
record_format dspace
spelling ir-123456789-304422025-05-07T13:05:21Z Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Kalita, D. I. Калита, Д. И. Optimization UAV dynamics modeling Remote sensing Proportional–integral–derivative Physics-informed neural networks In this paper, we propose a physics-informed neural network controller for quadcopter dynamics modeling. Physics-aware machine learning methods, such as physics-informed neural networks, consider the UAV dynamics model, solving the system of ordinary differential equations entirely, unlike proportional–integral–derivative controllers. The more accurate control action on the quadcopter reduces flight time and power consumption. We applied our fractional optimization algorithms to decreasing the solution error of quadcopter dynamics. Including advanced optimizers in the reinforcement learning model, we achieved the trajectory of UAV flight more accurately than state-of-the-art proportional–integral–derivative controllers. The advanced optimizers allowed the proposed controller to increase the quality of the building trajectory of the UAV compared to the state-of-the-art approach by 10 percentage points. Our model had less error value in spatial coordinates and Euler angles by 25–35% and 30–44%, respectively. 2025-05-07T13:03:53Z 2025-05-07T13:03:53Z 2025 Статья Abdulkadirov R., Lyakhov P., Butusov D., Nagornov N., Kalita D. Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling // Drones. - 2025. - 9 (3). - art. no. 187. - DOI: 10.3390/drones9030187 https://dspace.ncfu.ru/handle/123456789/30442 en Drones application/pdf application/pdf Multidisciplinary Digital Publishing Institute (MDPI)
institution СКФУ
collection Репозиторий
language English
topic Optimization
UAV dynamics modeling
Remote sensing
Proportional–integral–derivative
Physics-informed neural networks
spellingShingle Optimization
UAV dynamics modeling
Remote sensing
Proportional–integral–derivative
Physics-informed neural networks
Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Kalita, D. I.
Калита, Д. И.
Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling
description In this paper, we propose a physics-informed neural network controller for quadcopter dynamics modeling. Physics-aware machine learning methods, such as physics-informed neural networks, consider the UAV dynamics model, solving the system of ordinary differential equations entirely, unlike proportional–integral–derivative controllers. The more accurate control action on the quadcopter reduces flight time and power consumption. We applied our fractional optimization algorithms to decreasing the solution error of quadcopter dynamics. Including advanced optimizers in the reinforcement learning model, we achieved the trajectory of UAV flight more accurately than state-of-the-art proportional–integral–derivative controllers. The advanced optimizers allowed the proposed controller to increase the quality of the building trajectory of the UAV compared to the state-of-the-art approach by 10 percentage points. Our model had less error value in spatial coordinates and Euler angles by 25–35% and 30–44%, respectively.
format Статья
author Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Kalita, D. I.
Калита, Д. И.
author_facet Abdulkadirov, R. I.
Абдулкадиров, Р. И.
Lyakhov, P. A.
Ляхов, П. А.
Nagornov, N. N.
Нагорнов, Н. Н.
Kalita, D. I.
Калита, Д. И.
author_sort Abdulkadirov, R. I.
title Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling
title_short Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling
title_full Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling
title_fullStr Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling
title_full_unstemmed Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling
title_sort physics-aware machine learning approach for high-precision quadcopter dynamics modeling
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publishDate 2025
url https://dspace.ncfu.ru/handle/123456789/30442
work_keys_str_mv AT abdulkadirovri physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling
AT abdulkadirovri physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling
AT lyakhovpa physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling
AT lâhovpa physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling
AT nagornovnn physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling
AT nagornovnn physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling
AT kalitadi physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling
AT kalitadi physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling
_version_ 1842245545747283968