Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling
In this paper, we propose a physics-informed neural network controller for quadcopter dynamics modeling. Physics-aware machine learning methods, such as physics-informed neural networks, consider the UAV dynamics model, solving the system of ordinary differential equations entirely, unlike proportio...
Сохранить в:
| Главные авторы: | , , , , , , , |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
Multidisciplinary Digital Publishing Institute (MDPI)
2025
|
| Темы: | |
| Online-ссылка: | https://dspace.ncfu.ru/handle/123456789/30442 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| id |
ir-123456789-30442 |
|---|---|
| record_format |
dspace |
| spelling |
ir-123456789-304422025-05-07T13:05:21Z Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Kalita, D. I. Калита, Д. И. Optimization UAV dynamics modeling Remote sensing Proportional–integral–derivative Physics-informed neural networks In this paper, we propose a physics-informed neural network controller for quadcopter dynamics modeling. Physics-aware machine learning methods, such as physics-informed neural networks, consider the UAV dynamics model, solving the system of ordinary differential equations entirely, unlike proportional–integral–derivative controllers. The more accurate control action on the quadcopter reduces flight time and power consumption. We applied our fractional optimization algorithms to decreasing the solution error of quadcopter dynamics. Including advanced optimizers in the reinforcement learning model, we achieved the trajectory of UAV flight more accurately than state-of-the-art proportional–integral–derivative controllers. The advanced optimizers allowed the proposed controller to increase the quality of the building trajectory of the UAV compared to the state-of-the-art approach by 10 percentage points. Our model had less error value in spatial coordinates and Euler angles by 25–35% and 30–44%, respectively. 2025-05-07T13:03:53Z 2025-05-07T13:03:53Z 2025 Статья Abdulkadirov R., Lyakhov P., Butusov D., Nagornov N., Kalita D. Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling // Drones. - 2025. - 9 (3). - art. no. 187. - DOI: 10.3390/drones9030187 https://dspace.ncfu.ru/handle/123456789/30442 en Drones application/pdf application/pdf Multidisciplinary Digital Publishing Institute (MDPI) |
| institution |
СКФУ |
| collection |
Репозиторий |
| language |
English |
| topic |
Optimization UAV dynamics modeling Remote sensing Proportional–integral–derivative Physics-informed neural networks |
| spellingShingle |
Optimization UAV dynamics modeling Remote sensing Proportional–integral–derivative Physics-informed neural networks Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Kalita, D. I. Калита, Д. И. Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling |
| description |
In this paper, we propose a physics-informed neural network controller for quadcopter dynamics modeling. Physics-aware machine learning methods, such as physics-informed neural networks, consider the UAV dynamics model, solving the system of ordinary differential equations entirely, unlike proportional–integral–derivative controllers. The more accurate control action on the quadcopter reduces flight time and power consumption. We applied our fractional optimization algorithms to decreasing the solution error of quadcopter dynamics. Including advanced optimizers in the reinforcement learning model, we achieved the trajectory of UAV flight more accurately than state-of-the-art proportional–integral–derivative controllers. The advanced optimizers allowed the proposed controller to increase the quality of the building trajectory of the UAV compared to the state-of-the-art approach by 10 percentage points. Our model had less error value in spatial coordinates and Euler angles by 25–35% and 30–44%, respectively. |
| format |
Статья |
| author |
Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Kalita, D. I. Калита, Д. И. |
| author_facet |
Abdulkadirov, R. I. Абдулкадиров, Р. И. Lyakhov, P. A. Ляхов, П. А. Nagornov, N. N. Нагорнов, Н. Н. Kalita, D. I. Калита, Д. И. |
| author_sort |
Abdulkadirov, R. I. |
| title |
Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling |
| title_short |
Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling |
| title_full |
Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling |
| title_fullStr |
Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling |
| title_full_unstemmed |
Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling |
| title_sort |
physics-aware machine learning approach for high-precision quadcopter dynamics modeling |
| publisher |
Multidisciplinary Digital Publishing Institute (MDPI) |
| publishDate |
2025 |
| url |
https://dspace.ncfu.ru/handle/123456789/30442 |
| work_keys_str_mv |
AT abdulkadirovri physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling AT abdulkadirovri physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling AT lyakhovpa physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling AT lâhovpa physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling AT nagornovnn physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling AT nagornovnn physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling AT kalitadi physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling AT kalitadi physicsawaremachinelearningapproachforhighprecisionquadcopterdynamicsmodeling |
| _version_ |
1842245545747283968 |