Անցեք բովանդակությանը

Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms

Autism spectrum disorder (ASD) is a neurological condition characterized by impairments in social interaction. This diagnosis carries economic and social implications due to its high prevalence and associated morbidity. Data from electroencephalogram (EEG) sensors is numerical and serves as the inpu...

Ամբողջական նկարագրություն

Պահպանված է:
Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Lyakhov, P. A., Ляхов, П. А., Lyakhova, U. A., Ляхова, У. А., Baboshina, V. A., Бабошина, В. А., Baryshev, V. V., Барышев, В. В., Nagornov, N. N., Нагорнов, Н. Н.
Ձևաչափ: Статья
Լեզու:English
Հրապարակվել է: Saint Petersburg State University 2025
Խորագրեր:
Առցանց հասանելիություն:https://dspace.ncfu.ru/handle/123456789/30648
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
id ir-123456789-30648
record_format dspace
spelling ir-123456789-306482025-07-02T08:02:31Z Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms Выявление состояния внимания у детей с расстройствами аутистического спектра на основе нейросетевой классификации электроэнцефалограмм Lyakhov, P. A. Ляхов, П. А. Lyakhova, U. A. Ляхова, У. А. Baboshina, V. A. Бабошина, В. А. Baryshev, V. V. Барышев, В. В. Nagornov, N. N. Нагорнов, Н. Н. Autism spectrum disorder Processing from electroencephalogram Electroencephalogram Ensembling Multilayer linear perceptron Neural network Autism spectrum disorder (ASD) is a neurological condition characterized by impairments in social interaction. This diagnosis carries economic and social implications due to its high prevalence and associated morbidity. Data from electroencephalogram (EEG) sensors is numerical and serves as the input for machine learning-based predictions. The input data in this research includes features extracted from EEG signals, such as theta/beta ratio, theta/alpha ratio, and other relative power metrics, which are closely linked to cognitive control and attentional dynamics. These data are organized into two balanced classes: “Attention” and “No Attention,” comprising a total of 33 936 samples. This paper proposes 12 weighted and weighted-average ensemble models to enhance the accuracy of predicting attentional cues in individuals with ASD. For ensembling three multilayer perceptron architectures were developed and trained using various optimizers. The accuracy of the employed ensemble model of three multilayer perceptrons reached 95.90 %. The findings of this research can contribute to the advancement of novel diagnostic approaches and educational initiatives and serve as a foundation for future research utilizing machine learning techniques and the creation of innovative technologies for attention monitoring and training. 2025-07-02T08:00:40Z 2025-07-02T08:00:40Z 2025 Статья Lyakhov P.A., Lyakhova U.A., Baboshina V.A., Baryshev V.V., Nagornov N.N. Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms // Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. - 2025. - 21 (1). - pp. 92 - 111. - DOI: 10.21638/spbu10.2025.107 https://dspace.ncfu.ru/handle/123456789/30648 en Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya application/pdf application/pdf Saint Petersburg State University
institution СКФУ
collection Репозиторий
language English
topic Autism spectrum disorder
Processing from electroencephalogram
Electroencephalogram
Ensembling
Multilayer linear perceptron
Neural network
spellingShingle Autism spectrum disorder
Processing from electroencephalogram
Electroencephalogram
Ensembling
Multilayer linear perceptron
Neural network
Lyakhov, P. A.
Ляхов, П. А.
Lyakhova, U. A.
Ляхова, У. А.
Baboshina, V. A.
Бабошина, В. А.
Baryshev, V. V.
Барышев, В. В.
Nagornov, N. N.
Нагорнов, Н. Н.
Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
description Autism spectrum disorder (ASD) is a neurological condition characterized by impairments in social interaction. This diagnosis carries economic and social implications due to its high prevalence and associated morbidity. Data from electroencephalogram (EEG) sensors is numerical and serves as the input for machine learning-based predictions. The input data in this research includes features extracted from EEG signals, such as theta/beta ratio, theta/alpha ratio, and other relative power metrics, which are closely linked to cognitive control and attentional dynamics. These data are organized into two balanced classes: “Attention” and “No Attention,” comprising a total of 33 936 samples. This paper proposes 12 weighted and weighted-average ensemble models to enhance the accuracy of predicting attentional cues in individuals with ASD. For ensembling three multilayer perceptron architectures were developed and trained using various optimizers. The accuracy of the employed ensemble model of three multilayer perceptrons reached 95.90 %. The findings of this research can contribute to the advancement of novel diagnostic approaches and educational initiatives and serve as a foundation for future research utilizing machine learning techniques and the creation of innovative technologies for attention monitoring and training.
format Статья
author Lyakhov, P. A.
Ляхов, П. А.
Lyakhova, U. A.
Ляхова, У. А.
Baboshina, V. A.
Бабошина, В. А.
Baryshev, V. V.
Барышев, В. В.
Nagornov, N. N.
Нагорнов, Н. Н.
author_facet Lyakhov, P. A.
Ляхов, П. А.
Lyakhova, U. A.
Ляхова, У. А.
Baboshina, V. A.
Бабошина, В. А.
Baryshev, V. V.
Барышев, В. В.
Nagornov, N. N.
Нагорнов, Н. Н.
author_sort Lyakhov, P. A.
title Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
title_short Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
title_full Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
title_fullStr Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
title_full_unstemmed Detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
title_sort detection of attention state in children with autism spectrum disorder based on neural network classification of electroencephalograms
publisher Saint Petersburg State University
publishDate 2025
url https://dspace.ncfu.ru/handle/123456789/30648
work_keys_str_mv AT lyakhovpa detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT lâhovpa detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT lyakhovaua detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT lâhovaua detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT baboshinava detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT babošinava detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT baryshevvv detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT baryševvv detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT nagornovnn detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT nagornovnn detectionofattentionstateinchildrenwithautismspectrumdisorderbasedonneuralnetworkclassificationofelectroencephalograms
AT lyakhovpa vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT lâhovpa vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT lyakhovaua vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT lâhovaua vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT baboshinava vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT babošinava vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT baryshevvv vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT baryševvv vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT nagornovnn vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
AT nagornovnn vyâvleniesostoâniâvnimaniâudetejsrasstrojstvamiautističeskogospektranaosnovenejrosetevojklassifikaciiélektroéncefalogramm
_version_ 1842245594544865280