Пропуск в контексте

Effect of synthesis parameters on dimensional characteristics of fe3o4 nanoparticles: neural-network research

Our research shows the possibility of using the neural-network processing of experimental data to study the influence of various factors on the process of synthesis of nanoscale Iron (II, III) oxide. A mathematical model was obtained which adequately describes the effect of temperature, stabilizer m...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
Главные авторы: Blinov, A. V., Блинов, А. В., Gvozdenko, A. A., Гвозденко, А. А., Yasnaya, M. A., Ясная, М. А., Golik, A. B., Голик, А. Б., Blinova, A. A., Блинова, А. А., Shevchenko, I. M., Шевченко, И. М., Kramarenko, V. N., Крамаренко, В. Н.
פורמט: Статья
שפה:Russian
יצא לאור: TVER STATE UNIV 2020
נושאים:
גישה מקוונת:http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=E1foOAlVMmMF3jxHUZa&page=1&doc=1
https://dspace.ncfu.ru/handle/20.500.12258/11478
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תיאור
סיכום:Our research shows the possibility of using the neural-network processing of experimental data to study the influence of various factors on the process of synthesis of nanoscale Iron (II, III) oxide. A mathematical model was obtained which adequately describes the effect of temperature, stabilizer mass and precipitant quantity on the size of nanoparticles of Iron (II, III) oxide. The optimal synthesis conditions were determined, which provide a high content of Fe3O4 particles with an average hydrodynamic radius less than 100 nm