Пропуск в контексте

Effect of synthesis parameters on dimensional characteristics of fe3o4 nanoparticles: neural-network research

Our research shows the possibility of using the neural-network processing of experimental data to study the influence of various factors on the process of synthesis of nanoscale Iron (II, III) oxide. A mathematical model was obtained which adequately describes the effect of temperature, stabilizer m...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Blinov, A. V., Блинов, А. В., Gvozdenko, A. A., Гвозденко, А. А., Yasnaya, M. A., Ясная, М. А., Golik, A. B., Голик, А. Б., Blinova, A. A., Блинова, А. А., Shevchenko, I. M., Шевченко, И. М., Kramarenko, V. N., Крамаренко, В. Н.
Формат: Статья
Язык:Russian
Опубликовано: TVER STATE UNIV 2020
Темы:
Online-ссылка:http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=E1foOAlVMmMF3jxHUZa&page=1&doc=1
https://dspace.ncfu.ru/handle/20.500.12258/11478
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Краткое описание:Our research shows the possibility of using the neural-network processing of experimental data to study the influence of various factors on the process of synthesis of nanoscale Iron (II, III) oxide. A mathematical model was obtained which adequately describes the effect of temperature, stabilizer mass and precipitant quantity on the size of nanoparticles of Iron (II, III) oxide. The optimal synthesis conditions were determined, which provide a high content of Fe3O4 particles with an average hydrodynamic radius less than 100 nm