Neidio i'r cynnwys

Path planning method in the formation of the configuration of a multifunctional modular robot using a swarm control strategy

Multifunctional modular robots consist of a set of modules that can form a kinematic structure in accordance with the current task. When operating in a non-deterministic environment, the adaptive kinematic structure of the robot allows you to change the configuration and adapt to changing conditions...

Disgrifiad llawn

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Prif Awduron: Petrenko, V. I., Петренко, В. И., Tebueva, F. B., Тебуева, Ф. Б., Pavlov, A. S., Павлов, А. С., Antonov, V. O., Антонов, В. О., Kochanov, М., Кочанов, М.
Fformat: Статья
Iaith:English
Cyhoeddwyd: ATLANTIS PRESS 2020
Pynciau:
Mynediad Ar-lein:https://dspace.ncfu.ru/handle/20.500.12258/14503
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
Disgrifiad
Crynodeb:Multifunctional modular robots consist of a set of modules that can form a kinematic structure in accordance with the current task. When operating in a non-deterministic environment, the adaptive kinematic structure of the robot allows you to change the configuration and adapt to changing conditions and the limitations of the environment. However, the formation of the required configuration can take a lot of time, which is a problem when it is needed to perform the objective function in real time. Based on this, the purpose of this work is to reduce the time required for the formation of the modular robot configuration. The article proposes a method for path planning of moving modules when forming the configuration of a multifunctional modular robot using a swarm control strategy. This approach allows real-time information exchange between robot modules, and path planning accomplishes decentralized for each module, regardless of their number. The use of analytical geometry methods allows reducing the computational complexity of the method and avoiding the energy consumption of the onboard energy resources of the robot. The results of modeling the developed method for a robot consisting of 5-50 modules are presented