Пропуск в контексте

Application of machine learning methods in modeling hydrolithospheric processes

One of the most urgent problems in the study and analysis of hydrolithospheric processes is the construction of verifiable mathematical and computer models that make it possible to predict the behavior of an object under various initial conditions and input influences. Recently, machine learning met...

全面介紹

Сохранить в:
書目詳細資料
Главные авторы: Drovosekova, T. I., Дровосекова, Т. И., Pershin, I. M., Першин, И. М.
格式: Статья
語言:English
出版: Springer Science and Business Media Deutschland GmbH 2021
主題:
在線閱讀:https://dspace.ncfu.ru/handle/20.500.12258/16027
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:One of the most urgent problems in the study and analysis of hydrolithospheric processes is the construction of verifiable mathematical and computer models that make it possible to predict the behavior of an object under various initial conditions and input influences. Recently, machine learning methods have been increasingly used in geological research. This paper discusses machine learning methods used in geological exploration to automate data analysis, as well as used for neural network information modeling of geological objects