Пропуск в контексте

Analysis of Neural Networks for Image Classification

The article explores the option of using information theory’s mathematical tools to model artificial neural networks. The two primary network architectures for image recognition, classification, and clustering are the feedforward network and convolutional networks. The study investigates the use of...

全面介紹

Сохранить в:
書目詳細資料
Главные авторы: Vershkov, N. A., Вершков, Н. А., Babenko, M. G., Бабенко, М. Г., Kuchukov, V. A., Кучуков, В. А., Kuchukova, N. N., Кучукова, Н. Н., Kucherov, N. N., Кучеров, Н. Н.
格式: Статья
語言:English
出版: 2023
主題:
在線閱讀:https://dspace.ncfu.ru/handle/20.500.12258/25214
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The article explores the option of using information theory’s mathematical tools to model artificial neural networks. The two primary network architectures for image recognition, classification, and clustering are the feedforward network and convolutional networks. The study investigates the use of orthogonal transformations to enhance the effectiveness of neural networks and wavelet transforms in convolutional networks. The research proposes practical applications based on the theoretical findings.