Hoppa till innehåll

Area-efficient FPGA implementation of minimalistic convolutional neural network using residue number system

Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementati...

Full beskrivning

Sparad:
Bibliografiska uppgifter
Huvudupphovsmän: Chervyakov, N. I., Червяков, Н. И., Lyakhov, P. A., Ляхов, П. А., Valueva, M. V., Валуева, М. В., Valuev, G. V., Валуев, Г. В.
Materialtyp: Статья
Språk:English
Publicerad: IEEE Computer Society 2019
Ämnen:
Länkar:https://www.scopus.com/record/display.uri?eid=2-s2.0-85061049082&origin=resultslist&sort=plf-f&src=s&st1=%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System&st2=&sid=5de745aaf0b399b11edbcdbf364e241e&sot=b&sdt=b&sl=123&s=TITLE-ABS-KEY%28%09Area-Efficient+FPGA+Implementation+of+Minimalistic+Convolutional+Neural+Network+Using+Residue+Number+System%29&relpos=0&citeCnt=0&searchTerm=
https://dspace.ncfu.ru/handle/20.500.12258/4353
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!