Saltar al contenido

Bidirectional Encoder representation from Image Transformers for recognizing sunflower diseases from photographs

This paper proposes a modern system for recognizing sunflower diseases based on Bidirectional Encoder representation from Image Transformers (BEIT). The proposed system is capable of recognizing various sunflower diseases with high accuracy. The presented research results demonstrate the advantages...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Baboshina, V. A., Бабошина, В. А., Lyakhov, P. A., Ляхов, П. А., Lyakhova, U. A., Ляхова, У. А., Pismennyy, V. A., Письменный, В. А.
Formato: Статья
Lenguaje:English
Publicado: Institution of Russian Academy of Sciences 2025
Materias:
Acceso en línea:https://dspace.ncfu.ru/handle/123456789/30407
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper proposes a modern system for recognizing sunflower diseases based on Bidirectional Encoder representation from Image Transformers (BEIT). The proposed system is capable of recognizing various sunflower diseases with high accuracy. The presented research results demonstrate the advantages of the proposed system compared to known methods and contempo-rary neural networks. The proposed visual diagnostic system for sunflower diseases achieved 99.57 % accuracy on the sunflower disease dataset, which is higher than that of known methods. The approach described in the work can serve as an auxiliary tool for farmers, assisting them in promptly identifying diseases and pests and taking timely measures to treat plants. This, in turn, helps in preserving and enhancing the yield. This work can have a significant impact on the de-velopment of agriculture and the fight against the global food shortage problem.